Skip to main content
Log in

A 4-Methylumbelliferone-based Fluorescent Probe for the Sensitive Detection of Captopril

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A highly sensitive fluorogenic probe for captopril, 4-methylumbelliferyl-2, 4-dinitrobenzenesulfonate (4-MUDNBS), was designed and synthesized. 4-MUDNBS is a nonfluorescent compound and was synthesized via the one-step reaction of 4-methylumbelliferone (4-MU) with 2,4-dinitrobenzenesulfonyl chloride. Upon mixing with captopril in basic solution, the 2,4-dinitrobenzenesulfonyl group of 4-MUDNBS was efficiently removed and highly fluorescent 4-MU was released, hence leading to the dramatic fluorescence increase of the reaction solution. The fluorescence intensity is linear with captopril concentration in the range 3.0–500 ng mL−1 with a detection limit of 2.2 ng mL−1 (3σ). The effect of substituents on the benzenesulfonyl moiety of the probe is discussed, and the presence of electronegative groups is favorable for the thiolate-induced cleavage reaction. The proposed method has been successfully applied to the captopril determination in pharmaceutical preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fiorey K (1982) Analytical profiles of drug substances (Ed.), Vol. 11, Academic Press, New York, 1982, pp. 81–136

  2. Huang TM, He Z, Yang B, Shao LP, Zheng XW, Duan GL (2006) Simultaneous determination of captopril and hydrochlorothiazide in human plasma by reverse-phase HPLC from linear gradient elution. J Pharm Biomed Anal 41(2):644–648. doi:10.1016/j.jpba.2005.12.007

    Article  PubMed  CAS  Google Scholar 

  3. Rezende KR, Mundim IM, Teixeira LS, Souza WC, Ramos DR, Cardoso CRF, Souza IC, Gratao MZ, Bellorio KB (2007) Determination of captopril in human plasma, using solid phase extraction and high-performance liquid chromatography, coupled to mass spectrometry: Application to bioequivalence study. J Chromatogr B Analyt Technol Biomed Life Sci 850(1–2):59–67. doi:10.1016/j.jchromb.2006.11.007

    PubMed  CAS  Google Scholar 

  4. Kusmierek K, Bald E (2007) A simple liquid chromatography method for the determination of captopril in urine. Chromatographia 66(1–2):71–74. doi:10.1365/s10337-007-0232-8

    Article  CAS  Google Scholar 

  5. Karlicek R, Solich P (1998) Flow-injection spectrophotometric determination of captopril using on-line solid phase extraction. Pharmazie 53(8):549–551

    CAS  Google Scholar 

  6. Tzanavaras PD, Themelis DG, Economou A, Theodoridis G (2002) Reversed flow-injection manifold for the spectrophotometric determination of captopril based on its inhibitory effect on the Co(II)-2,2′-dipyridyl-2-pyridylhydrazone complex formation. Talanta 57(3):575–581. doi:10.1016/S0039-9140(02)00059-0

    Article  PubMed  CAS  Google Scholar 

  7. Tzanavaras PD, Themelis DG, Economou A, Theodoridis G (2003) Flow and sequential injection manifolds for the spectrophotometric determination of captopril based on its oxidation by Fe(III). Mikrochim Acta 142(1–2):55–62. doi:10.1007/s00604-003-0952-x

    CAS  Google Scholar 

  8. Palomeque ME, Band BSF (2002) Flow injection biamperometric determination of captopril. J Pharm Biomed Anal 30(3):547–552. doi:10.1016/S0731-7085(02)00315-1

    Article  PubMed  CAS  Google Scholar 

  9. Siangproh W, Ngamukot P, Chailapakul O (2003) Electrochemical determination of captopril at boron-doped diamond thin film electrode applied to a flow injection system. Sens Actuators B Chem 91(1–3):60–66. doi:10.1016/S0925-4005(03)00067-4

    Article  Google Scholar 

  10. Ioannides X, Economou A, Voulgaropoulos A (2003) A study of the determination of the hypertensive drug captopril by square wave cathodic adsorptive stripping voltammetry. J Pharm Biomed Anal 33(2):309–316. doi:10.1016/S0731-7085(03)00262-0

    Article  PubMed  CAS  Google Scholar 

  11. Parham H, Zargar B (2005) Square-wave voltammetric (SWV) determination of Captopril in reconstituted serum and pharmaceutical formulations. Talanta 65(3):776–780. doi:10.1016/j.talanta.2004.08.005

    Article  PubMed  CAS  Google Scholar 

  12. Shahrokhian S, Karimi M, Khajehsharifi H (2005) Carbon-paste electrode modified with cobalt-5-nitrolsalophen as a sensitive voltammetric sensor for detection of captopril. Sens Actuators B Chem 109(2):278–284. doi:10.1016/j.snb.2004.12.059

    Article  Google Scholar 

  13. Li BX, Zhang ZJ, Wu ML (2001) Flow-injection chemiluminescence determination of captopril using on-line electrogenerated silver (II) as the oxidant. Microchem J 70:85–91. doi:10.1016/S0026-265X(01)00090-X

    Article  CAS  Google Scholar 

  14. Pulgarin JAM, Bermejo LFG, Lopez PF (2005) Sensitive determination of captopril by time-resolved chemiluminescence using the stopped-flow analysis based on potassium permanganate oxidation. Anal Chim Acta 546(1):60–67. doi:10.1016/j.aca.2005.05.014

    Article  Google Scholar 

  15. Zheng XW, Zhang ZJ, Li BX (2001) Flow injection chemiluminescence determination of captopril with in situ electrogenerated Mn3+ as the oxidant. Electroanalysis 13(12):1046–1050. doi:10.1002/1521-4109(200108)13:12<1046::AID-ELAN1046>3.0.CO;2-5

    Article  CAS  Google Scholar 

  16. Du JX, Li YH, Lu JR (2002) Flow injection chemiluminescence determination of captopril based on its enhancing effect on the luminol-ferricyanide/ferrocyanide reaction. Luminescence 17(3):165–167. doi:10.1002/bio.685

    Article  PubMed  CAS  Google Scholar 

  17. Economou A, Themelis DG, Theodoridis G, Tzanavaras PD (2002) Sensitive determination of captopril by flow injection analysis with chemiluminescence detection based on the enhancement of the luminol reaction. Anal Chim Acta 463(2):249–255. doi:10.1016/S0003-2670(02)00424-5

    Article  CAS  Google Scholar 

  18. Hillaert S, Van den Bossche W (1999) Determination of captopril and its degradation products by capillary electrophoresis. J Pharm Biomed Anal 21(1):65–73. doi:10.1016/S0731-7085(99)00092-8

    Article  PubMed  CAS  Google Scholar 

  19. Perez-Ruiz T, Martinez-Lozano C, Galera R (2006) Development and validation of a capillary electrophoresis method with laser-induced fluorescence detection for the determination of captopril in human urine and pharmaceutical preparations. Electrophoresis 27(12):2310–2316. doi:10.1002/elps.200500861

    Article  PubMed  CAS  Google Scholar 

  20. Al-Ghannam SM, El-Brashy AM, Al-Farhan BS (2002) Fluorimetric determination of some thiol compounds in their dosage forms. Farmaco 57(8):625–629

    PubMed  CAS  Google Scholar 

  21. Ivashkiv E (1984) Spectrofluorometric determination of captopril plus captopril disulfide metabolites in plasma. J Pharm Sci 73:1427–1430. doi:10.1002/jps.2600731026

    Article  PubMed  CAS  Google Scholar 

  22. Tache F, Farca A, Medvedovici A, David V (2002) Validation of a LC-fluorescence method for determination of free captopril in human plasma, using a pre-column derivatization reaction with monobromobimane. J Pharm Biomed Anal 28(3–4):549–557. doi:10.1016/S0731-7085(01)00687-2

    Article  PubMed  CAS  Google Scholar 

  23. Kok RJ, Visser J, Moolenaar F, de Zeeuw D, Meijer DKF (1997) Bioanalysis of captopril: two sensitive high-performance liquid chromatographic methods with pre- or postcolumn fluorescent labeling. J Chromatogr B Analyt Technol Biomed Life Sci 693(1):181–189. doi:10.1016/S0378-4347(97)00002-9

    Article  CAS  Google Scholar 

  24. Imai K, Toyo'oka T, Watanabe Y (1983) A novel fluorogenic reagent for thiols: ammonium 7-fluorobenzo-2-oxa-1,3-diazole-4-sulfonate. Anal Biochem 128(2):471–473. doi:10.1016/0003-2697(83)90404-9

    Article  PubMed  CAS  Google Scholar 

  25. Searles S, Nukima S (1959) Cleavage and rearrangement of sulfonamides. Chem Rev 59:1077–1103. doi:10.1021/cr50030a004

    Article  CAS  Google Scholar 

  26. Fukuyama T, Cheung M, Jow C-K, Hidai Y, Kant T (1997) 2,4-Dinitrobenzenesulfonamides: a simple and practical method for the preparation of a variety of secondary amines and diamines. Tetrahedron Lett 38(33):5831–5834. doi:10.1016/S0040-4039(97)01334-8

    Article  CAS  Google Scholar 

  27. Nihei K-i, Kato MJ, Yamane T, Palma MS, Konno K (2001) 2-Nitro- and 2,4-dinitrobenzenesulfonamides as protecting groups for primary amines. Synlett 7:1167–1169. doi:10.1055/s-2001-15158

    Article  Google Scholar 

  28. Gee KR, Sun W-C, Bhalgat MK, Upson RH, Klaubert DH, Latham KA, Haugland RP (1999) Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and β-galactosidases. Anal Biochem 273:41–48. doi:10.1006/abio.1999.4202

    Article  PubMed  CAS  Google Scholar 

  29. Adamczyk M, Cornwell M, Huff J, Rege S, Rao TVS (1997) Novel 7-hydroxycoumarin based fluorescent labels. Bioorg Med Chem Lett 7(15):1985–1988. doi:10.1016/S0960-894X(97)00345-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Education Department of Shaanxi Province of China (No. 07JK406) and The Natural Science Foundation of Shaanxi Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Feng Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Yang, XF. & Zhao, M. A 4-Methylumbelliferone-based Fluorescent Probe for the Sensitive Detection of Captopril. J Fluoresc 19, 593–599 (2009). https://doi.org/10.1007/s10895-008-0449-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0449-4

Keywords

Navigation