Journal of Fluorescence

, Volume 19, Issue 2, pp 285–289 | Cite as

Gd2(MoO4)3:Er3+ Nanophosphors for an Enhancement of Silicon Solar-Cell Near-Infrared Response

Original Paper

Abstract

In an attempt to take full advantage of near-infrared part of the solar spectrum, Gd2(MoO4)3:Er3+ nanophosphors have been proposed as potential luminescent materials to enhance the response of the silicon solar-cell. Upon excitation with low-energy near-infrared photons, intense upconverted emissions at 545, 665, 800, and 980 nm, for which energies higher than the bandgap of silicon solar-cell, have been achieved with conversion efficiencies of 0.12%, 0.05%, 0.83%, and 1.35%, respectively. Development of nanophosphors for photovoltaic purposes could open up an approach in achieving high-efficiency silicon-based solar-cell by means of the up-conversion of the sub-bandgap near-infrared part of the solar spectrum (E < 1.12 eV) to visible/near-infrared photons.

Keywords

Upconversion Nanophosphors Rare-earth ions Solar cells 

References

  1. 1.
    Gibart P, Auzel F, Guillaume JC, Zahraman K (1996) Below band-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion. Jpn J Appl Phys 35(Part 1):4401–4403. doi:10.1143/JJAP.35.4401 CrossRefGoogle Scholar
  2. 2.
    Trupke T, Green MA, Wurfel P (2002) Improving solar cell efficiencies by up-conversion of sub-band-gap light. J Appl Phys 92:4117–4122. doi:10.1063/1.1505677 CrossRefGoogle Scholar
  3. 3.
    Shalav A, Richards BS, Trupke T, Kramer KW, Gudel H (2005) Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl Phys Lett 86:013505. doi:10.1063/1.1844592 CrossRefGoogle Scholar
  4. 4.
    Bird RE, Riordan C (1986) Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earths surface for cloudless atmospheres. J Clim Appl Meteorol 25:87–97. doi:10.1175/1520-0450(1986)025<0087:SSSMFD>2.0.CO;2 CrossRefGoogle Scholar
  5. 5.
    Richards BS (2006) Luminescent layers for enhanced silicon solar cell performance: Downconversion. Sol Energy Mater Sol Cells 90:1189–1207. doi:10.1016/j.solmat.2005.07.001 CrossRefGoogle Scholar
  6. 6.
    Digonnet MJF (2001) Rare-earth-doped fiber lasers and amplifiers. Marcel Dekker, New YorkGoogle Scholar
  7. 7.
    Reisfeld R, Jorgensen CK (1977) Lasers and excitated states of rare-earth. Springer, BerlinGoogle Scholar
  8. 8.
    Ryba-Romanowski W, Golab S, Dominiak-Dzik G, Slarz P, Lukasmer T (2001) Conversion of infrared radiation into red emission in YVO4:Yb,Ho. Appl Phys Lett 79:3026–3028. doi:10.1063/1.1415767 CrossRefGoogle Scholar
  9. 9.
    Hehlen MP, Kramer K, Gudel HU, McFarlane RA, Schwarts RN (1994) Up-conversion in Er3+ -dimer systems-trends within the series Cs3Er2X9 (X = Cl,Br,I). Phys Rev B 49:12475–12484. doi:10.1103/PhysRevB.49.12475 CrossRefGoogle Scholar
  10. 10.
    Zhang QY, Li T, Jiang ZH, Ji XH, Buddhudu S (2005) 980 nm laser-diode-excited intense blue upconversion in Tm3+ /Yb3+ -codoped gallate-bismuth-lead glasses. Appl Phys Lett 87:171911. doi:10.1063/1.2115082 CrossRefGoogle Scholar
  11. 11.
    Zhang QY, Yang CH, Pan YX (2007) Cooperative quantum cutting in one-dimensional YbxGd1–xAl3(BO3)4: Tb3+ nanorods. Appl Phys Lett 90:021107. doi:10.1063/1.2430942 CrossRefGoogle Scholar
  12. 12.
    Pan YX, Zhang QY, Jiang ZH (2007) Comparative Investigation on Nanocrystal Structure and Luminescence Properties of Gadolinium Molybdates Codoped with Er3+/Yb3+. J Fluoresc 17:444–451. doi:10.1007/s10895-007-0191-3 PubMedCrossRefGoogle Scholar
  13. 13.
    Yang CH, Pan YX, Zhang QY (2007) Cooperative energy transfer and frequency upconversion in Yb3+–Tb3+ and Nd3+–Yb3+–Tb3+ codoped GdAl3(BO3)4 phosphors. J Fluoresc 17:500–504. doi:10.1007/s10895-007-0200-6 PubMedCrossRefGoogle Scholar
  14. 14.
    Pan YX, Zhang QY, Zhao C, Jiang ZH (2007) Luminescent properties of novel Ho3+ and Tm3+ doped gadolinium molybdate nanocrystals synthesized by the Pechini method. Solid State Commun 142:24–27. doi:10.1016/j.ssc.2007.01.029 CrossRefGoogle Scholar
  15. 15.
    Lucazeau G, Machon D (2006) Polarized Raman spectra of Gd2(MoO4)3 in its orthorhombic structure. J Raman Spectro 37:189–201. doi:10.1002/jrs.1456 CrossRefGoogle Scholar
  16. 16.
    Pollnau M, Gamelin DR, Lüthi SR, Güdel HU, Hehlen MP (2000) Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys Rev B 61:3337–3346. doi:10.1103/PhysRevB.61.3337 CrossRefGoogle Scholar
  17. 17.
    Pan ZD, Morgan SH, Dyer K, Ueda A (1996) Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses. J Appl Phys 79:8906–8913CrossRefGoogle Scholar
  18. 18.
    Vetrone F, Boyer JC, Capobianco JA, Speghini A, Bettinelli M (2002) 980 nm excited upconversion in an Er-doped ZnO-TeO2 glass. Appl Phys Lett 80:1752–1754. doi:10.1063/1.1458073 CrossRefGoogle Scholar
  19. 19.
    Judd BR (1962) Optical absorption intensities of rare-earth ions. Phys Rev B 127:750–761CrossRefGoogle Scholar
  20. 20.
    Ofelt GS (1962) Intensities of crystal spectra and decay of Er3+ fluorescence in LaF3. J Chem Phys 37:511–520. doi:10.1063/1.1701366 CrossRefGoogle Scholar
  21. 21.
    Qian Q, Wang Y, Zhang QY, Yang GF, Jiang ZH (2008) Spectroscopic properties of Er3+-doped Na2O-Sb2O3-B2O3-SiO2 glasses. J Non-Cryst Solids 354:1981–1985. doi:10.1016/j.jnoncrysol.2007.11.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Key Lab of Specially Functional Materials of Ministry of Education and Institute of Optical Communication MaterialsSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations