Skip to main content
Log in

Design and Synthesis of Highly Photostable Yellow–Green Emitting 1,8-Naphthalimides as Fluorescent Sensors for Metal Cations and Protons

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Two highly photostable yellow–green emitting 1,8-naphthalimides 5 and 6, containing both N-linked hindered amine moiety and a secondary or tertiary cation receptor, were synthesized for the first time. Novel compounds were configured as “fluorophore–spacer–receptor” systems based on photoinduced electron transfer. Photophysical characteristics of the dyes were investigated in DMF and water/DMF (4:1, v/v) solution. The ability of the new compounds to detect cations was evaluated by the changes in their fluorescence intensity in the presence of metal ions (Cu2+, Pb2+, Zn2+, Ni2+, Co2+) and protons. The presence of metal ions and protons was found to disallow a photoinduced electron transfer leading to an enhancement in the dye fluorescence intensity. Compound 5, containing secondary amine receptor, displayed a good sensor activity towards metal ions and protons. However the sensor activity of dye 6, containing a tertiary amine receptor and a shorter hydrocarbon spacer, was substantially higher. The results obtained indicate the potential of the novel compounds as highly photostable and efficient “off–on” pH switchers and fluorescent detectors for metal ions with pronounced selectivity towards Cu2+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Scheme 5
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 6
Fig. 10

Similar content being viewed by others

Abbreviations

HALS:

hindered amine light stabilizer

PET:

photoinduced electron transfer

References

  1. Balzani V (2003) Photochemical molecular devices. Photochem Photobiol Sci 2:459–476 doi:10.1039/b300075n

    Article  PubMed  CAS  Google Scholar 

  2. de Silva A, Fox D, Huxley A, Moody T (2000) Combining luminescence, coordination and electron transfer for signalling purposes. Coord Chem Rev 205:41–57 doi:10.1016/S0010-8545(00)00238-1

    Article  Google Scholar 

  3. Rurack K, Resch-Gender U (2002) Rigidization, preorientation and electronic decoupling—the magic triangle for the design of highly efficient fluorescent sensors and switches. Chem Soc Rev 31:116–127 doi:10.1039/b100604p

    Article  PubMed  CAS  Google Scholar 

  4. Balzani V, Credi A, Raymo F, Stoddart J (2000) Artificial molecular machines. Angew Chem Int Ed 39:3348–3391 doi:10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X

    Article  CAS  Google Scholar 

  5. Raymo F (2002) Digital processing and communication with molecular switches. Adv Mater 14:401–414 doi:10.1002/1521-4095(20020318)14:6<401::AID-ADMA401>3.0.CO;2-F

    Article  CAS  Google Scholar 

  6. He H, Mortellaro M, Leiner M, Young S, Fraatz R, Tusa J (2003) A fluorescent chemosensor for sodium based on photoinduced electron transfer. Anal Chem 75:549–555 doi:10.1021/ac0205107

    Article  PubMed  CAS  Google Scholar 

  7. Gunnlaugsson T, Bichell B, Nolan C (2002) A novel fluorescent photoinduced electron transfer (PET) sensor for lithium. Tetrahedron Lett 43:4989–4992 doi:10.1016/S0040-4039(02)00895-X

    Article  CAS  Google Scholar 

  8. Bissell R, de Silva A, Gunaratne H, Lynch P, Maguire G, McCoy C et al (1992) Molecular fluorescent signalling with fluorophore–spacer–receptor systems: approaches to sensing and switching devices via supramolecular photophysics. Chem Soc Rev 21:187–196 doi:10.1039/cs9922100187

    Article  CAS  Google Scholar 

  9. de Silva A, Gunaratne H, Gunnlaugsson T, Huxley A, McCoy C, Rademacher J et al (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566 doi:10.1021/cr960386p

    Article  PubMed  Google Scholar 

  10. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40 doi:10.1016/S0010-8545(00)00246-0

    Article  CAS  Google Scholar 

  11. de Silva A, Fox D, Huxley A, McClenaghan N, Roiron J (1999) Metal complexes as components of luminescent signalling systems. Coord Chem Rev 186:297–306 doi:10.1016/S0010-8545(98)00275-6

    Article  Google Scholar 

  12. de Silva A, McCaughan B, McKinney B, Querol M (2003) Newer optical based molecular devices from older coordination chemistry. Dalton Transactions 10:1902–1913 doi:10.1039/b212447p

    Article  Google Scholar 

  13. Callan J, de Silva A, Magri D (2005) Luminescent sensors and switches in the early 21st century. Tetrahedron 61:8551–8588 doi:10.1016/j.tet.2005.05.043

    Article  CAS  Google Scholar 

  14. Gan J, Chen K, Chang CP, Tian H (2003) Luminescent properties and photo-induced electron transfer of naphthalimides with piperazine substituent. Dyes Pigm 57:21–28 doi:10.1016/S0143-7208(02)00162-6

    Article  CAS  Google Scholar 

  15. de Silva A, Goligher A, Gunaratne H, Rice T (2003) The pH-dependent fluorescence of pyridylmethyl-4-amino-1,8-naphthalimides. Arkivoc 7:229–243

    Google Scholar 

  16. Patrick L, Whiting A (2002) Synthesis of some polymerisable fluorescent dyes. Dyes Pigm 55:123–132 doi:10.1016/S0143-7208(02)00067-0

    Article  CAS  Google Scholar 

  17. Bojinov V, Konstantinova T (2002) Synthesis of polymerizable 1,8-naphthalimide dyes containing hindered amine fragment. Dyes Pigm 54:239–245 doi:10.1016/S0143-7208(02)00047-5

    Article  CAS  Google Scholar 

  18. Bojinov V, Grabchev I (2003) Synthesis of new polymerizable 1,8-naphthalimide dyes containing a 2-hydroxyphenylbenzotriazole fragment. Dyes Pigm 59:277–283 doi:10.1016/S0143-7208(03)00113-X

    Article  CAS  Google Scholar 

  19. Bojinov V, Panova I (2007) Synthesis and absorption properties of new yellow-green emitting benzo[de]isoquinoline-1,3-diones containing hindered amine and 2-hydroxyphenylbenzotriazole fragments. Dyes Pigm 74:551–560 doi:10.1016/j.dyepig.2006.03.016

    Article  CAS  Google Scholar 

  20. Hrdlovič P, Chmela Š, Danko M (1998) Spectral characteristics and photochemical stability of fluorescence probes based on 1,8-naphthaleneimide in solution and in polymer matrix. J Photochem Photobiol A Chem 112:197–203 doi:10.1016/S1010-6030(97)00277-3

    Article  Google Scholar 

  21. Kollar J, Hrdlovič P, Chmela Š (2008) Synthesis and spectral characteristics of di-substituted 1,8-naphthalimides: bi-radical formation. J Photochem Photobiol A Chem 195:64–71 doi:10.1016/j.jphotochem.2007.09.008

    Article  CAS  Google Scholar 

  22. Hrdlovič P, Chmela Š, Danko M, Sarakha M, Guyot G (2008) Spectral properties of probes containing benzothioxanthene chromophore linked with hindered amine in solution and in polymer matrices. J Fluoresc 18:393–402 doi:10.1007/s10895-007-0279-9

    Article  PubMed  Google Scholar 

  23. Martin E, Weigand R, Pardo A (1996) Solvent dependence of the inhibition of intramolecular charge-transfer in N-substituted 1,8-naphthalimide derivatives as dye lasers. J Lumin 68:157–164 doi:10.1016/0022-2313(96)00008-7

    Article  CAS  Google Scholar 

  24. Gruzinskii V, Kukhto A, Shakkah G (1998) Spectra of lasing efficiency in lasers with solutions of complex organic compounds. J Appl Spectrosc 65:463–465 doi:10.1007/BF02675471

    Article  CAS  Google Scholar 

  25. Tao ZF, Qian X (1999) Naphthalimide hydroperoxides as photonucleases: substituent effects and structural basis. Dyes Pigm 43:139–145 doi:10.1016/S0143-7208(99)00037-6

    Article  CAS  Google Scholar 

  26. Stewart W (1981) Synthesis of 3,6-disulfonated 4-aminonaphthalimides. J Am Chem Soc 103:7615–7620 doi:10.1021/ja00415a033

    Article  CAS  Google Scholar 

  27. Morgado J, Gruner J, Walcott SP, Yong TM, Cervini R, Moratti SC et al (1998) 4-AcNI—a new polymer for light-emitting diodes. Synth Met 95:113–117 doi:10.1016/S0379-6779(98)00042-3

    Article  CAS  Google Scholar 

  28. Zhu W, Hu C, Chen K, Tian H (1998) Luminescent properties of copolymeric dyad compounds containing 1,8-naphthalimide and 1,3,4-oxadiazole. Synth Met 96:151–154 doi:10.1016/S0379-6779(98)00083-6

    Article  CAS  Google Scholar 

  29. Tian H, Gan J, Chen K, He J, Song Q, Hou X (2002) Positive and negative fluorescent imaging induced by naphthalimide polymers. J Mater Chem 12:1262–1267 doi:10.1039/b200509c

    Article  CAS  Google Scholar 

  30. Grabchev I, Qian X, Bojinov V, Xiao Y, Zhang W (2002) Synthesis and photophysical properties of 1,8-naphthalimide-labelled dendrimers as PET sensors of proton and transition metal ion. Polymer (Guildf) 43:5731–5736 doi:10.1016/S0032-3861(02)00417-2

    Article  CAS  Google Scholar 

  31. Tian H, Xu T, Zhao Y, Chen K (1999) Two-path photo-induced electron transfer in naphthalimide-based model compound. J Chem Soc Perkin Trans 2:545–549 doi:10.1039/a808123i

    Google Scholar 

  32. Bojinov V, Konstantinova T (2007) Fluorescent 4-(2,2,6,6-tetramethylpiperidin-4-ylamino)-1,8-naphthalimide pH chemosensor based on photoinduced electron transfer. Sens Actuators B Chem 123:869–876 doi:10.1016/j.snb.2006.10.035

    Article  Google Scholar 

  33. Poteau X, Brown A, Brown R, Holmes C, Matthew D (2000) Fluorescence switching in 4-amino-1,8-naphthalimides: “on–off–on” operation controlled by solvent and cations. Dyes Pigm 47:91–105 doi:10.1016/S0143-7208(00)00067-X

    Article  CAS  Google Scholar 

  34. Jia L, Zhang Y, Guo X, Qian X (2004) A novel chromatism switcher with double receptors selectively for Ag+ in neutral aqueous solution: 4,5-diaminoalkeneamino-N-alkyl-l,8-naphthalimides. Tetrahedron Lett 45:3969–3973 doi:10.1016/j.tetlet.2004.03.105

    Article  CAS  Google Scholar 

  35. Zhu W, Hu M, Yao R, Tian H (2003) A novel family of twisted molecular luminescent materials containing carbazole unit for single-layer organic electroluminescent devices. J Photochem Photobiol A Chem 154:169–177 doi:10.1016/S1010-6030(02)00325-8

    Article  CAS  Google Scholar 

  36. Facoetti H, Robin P, Le Barny P, Schott M, Bouche CM, Berdague P (1996) Side-chain electroluminescent polymers. Synth Met 81:191–195 doi:10.1016/S0379-6779(96)03767-8

    Article  Google Scholar 

  37. Zhu W, Minami N, Kazaoui S, Kim Y (2003) Fluorescent chromophores functionalized single-wall carbon nanotubes with minimal alteration to their characteristic one-dimensional electronic states. J Mater Chem 13:2196–2201 doi:10.1039/b303885h

    Article  CAS  Google Scholar 

  38. Grabchev I, Chovelon JM (2003) Synthesis and functional properties of green fluorescent poly(methylmethacrylate) for use in liquid crystal systems. Polym Adv Technol 14:601–608 doi:10.1002/pat.376

    Article  CAS  Google Scholar 

  39. Grabchev I, Moneva I, Bojinov V, Guittonneau S (2000) Synthesis and properties of fluorescent 1,8-naphthalimide dyes for application in liquid crystal displays. J Mater Chem 10:1291–1296 doi:10.1039/a909153j

    Article  CAS  Google Scholar 

  40. Cosnard F, Wintgens V (1998) A new fluoroionophore derived from 4-amino-N-methyl-1,8-naphthalimide. Tetrahedron Lett 39:2751–2754 doi:10.1016/S0040-4039(98)00302-5

    Article  CAS  Google Scholar 

  41. Grabchev I, Sali S, Betcheva R, Gregoriou V (2007) New green fluorescent polymer sensors for metal cations and protons. Eur Polym J 43:4297–4305 doi:10.1016/j.eurpolymj.2007.07.036

    Article  CAS  Google Scholar 

  42. Reynolds G, Drexhage K (1975) New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers. Opt Commun 13:222–225 doi:10.1016/0030-4018(75)90085-1

    Article  CAS  Google Scholar 

  43. de Silva A, Gunaratne H, McCoy C (1993) A molecular photoionic AND gate based on fluorescent signaling. Nature 364:42–44 doi:10.1038/364042a0

    Article  Google Scholar 

  44. de Sivla A, Gunaratne H, Habib-Jiwan JL, McCoy C, Rice T, Soumillion JP (1995) New fluorescent model compounds for the study of photoinduced electron transfer: the influence of molecular electric field in the excited state. Angew Chem Int Ed Engl 34:1728–1731 doi:10.1002/anie.199517281

    Article  Google Scholar 

  45. Rurack K (2001) Flipping the light switch ‘ON’—the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochim Acta Part A Mol Biomol Spectrosc 57:2161–2195

    Article  CAS  Google Scholar 

  46. Gordon P, Gregory P (1987) Organic chemistry in colour. Springer, Berlin

    Google Scholar 

  47. Grabchev I, Bojinov V, Petkov H (2001) Synthesis and photophysical properties of polymerizable 1,8-naphthalimide dyes and their copolymers with styrene. Dyes Pigm 51:1–8 doi:10.1016/S0143-7208(01)00041-9

    Article  CAS  Google Scholar 

  48. Yang S, Meng F, Tian H, Chen K (2002) Photostability of novel copolymers functionalized with laser dyes based on modified rhodamine 6G and 1,8-naphthalimide. Eur Polym J 38:911–919 doi:10.1016/S0014-3057(01)00265-8

    Article  CAS  Google Scholar 

  49. Terenin A (1967) Photonica of dyes and related organic compounds. Science, Leningrad (in Russian)

    Google Scholar 

  50. Gunnlaugsson T, McCoy C, Morrow R, Phelan C, Stomeo F (2003) Towards the development of controllable and reversible ‘on–off’ luminescence switching in soft-matter; synthesis and spectroscopic investigation of 1,8-naphthalimide-based PET (photoinduced electron transfer) chemosensors for pH in water-permeable hydrogels. Arkivoc 7:216–228

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of Bulgaria (project VU-X-201/06). Vladimir Bojinov and Nikolai Georgiev also acknowledge the Science Foundation at the University of Chemical Technology and Metallurgy (Sofia, Bulgaria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir B. Bojinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bojinov, V.B., Georgiev, N.I. & Bosch, P. Design and Synthesis of Highly Photostable Yellow–Green Emitting 1,8-Naphthalimides as Fluorescent Sensors for Metal Cations and Protons. J Fluoresc 19, 127–139 (2009). https://doi.org/10.1007/s10895-008-0394-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0394-2

Keywords

Navigation