Skip to main content
Log in

The Fluorescence Enhancement of the Protein Adsorbed on the Surface of Ag Nanoparticle

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The fluorescence enhancement of the BSA adsorbed on the surface of Ag nanoparticles is reported, where non-fluorescent collagen is used as the separator between the BSA and Ag nanoparticles. The study indicates that Ag nanoparticles can enhance the fluorescence of the BSA, especially the fluorescence of the tyrosine residues with lower quantum. Three types of Ag nanoparticles are evaluated including Ag island film, Ag colloids and fractal Ag electrode. Of them Ag island film is the best. The investigation suggests that the fluorescence enhancement of the BSA is related to the adsorption of the BSA on the surface of Ag island film through the hydrophobic interaction, while the collagen can promote the adsorption of the BSA on the surface of Ag island film and change its conformation, resulting in the interaction between BSA and Ag island film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li N, Cook L, Santos C, Cass CE, Mackey JR, Dovichi N (2002) Use of a small reporter molecule to determine cell-surface proteins by capillary electrophoresis and laser-induced fluorescence: use of 5-SAENTA-x8f for quantitation of the human equilibrative nucleoside transporter 1 protein. Anal Chem 74(11):2573–2577 doi:10.1021/ac025559r

    Article  PubMed  CAS  Google Scholar 

  2. Li YF, Shen XW, Huang CZ (2008) A coupled reagent of o-phthalaldehyde and sulfanilic acid for protein detection basedon the measurements of light scattering signalswith a Common spectrofluorometer. Talanta 75:1041–1045 doi:10.1016/j.talanta.2008.01.004

    Article  PubMed  CAS  Google Scholar 

  3. Wu X, Zheng JH, Ding HH, Ran DH, Xu W, Song YY et al (2007) Study on the interaction between oxolinic acid aggregates and protein and its analytical application. Anal Chim Acta 596:16–22 doi:10.1016/j.aca.2007.05.051

    Article  PubMed  CAS  Google Scholar 

  4. Dumitrescu RS (2003) Nitric oxide reduction by heme-thiolate enzymes (P450nor): a reevaluation of the mechanism. Eur J Inorg Chem (6):1048–1052 doi:10.1002/ejic.200390136

    Article  Google Scholar 

  5. Yasui N, Koide T (2003) Collagen–protein interactions mapped by phototriggered thiol introduction. J Am Chem Soc 125(51):15728–15729 doi:10.1021/ja038148g

    Article  PubMed  CAS  Google Scholar 

  6. Kuroda K, Kato M, Mima J, Ueda M (2006) Systems for the detection and analysis of protein–protein interactions. Appl Microbiol Biotechnol 71:127–136 doi:10.1007/s00253-006-0395-5

    Article  PubMed  CAS  Google Scholar 

  7. Ran DH, Wu X, Zheng JH, Yang JH, Zhou HP, Zhang MF et al (2007) Study on the interaction between florasulam and bovine serum albumin. J Fluoresc 17:721–726 doi:10.1007/s10895-007-0226-9

    Article  PubMed  CAS  Google Scholar 

  8. Patiln GV (2003) Biopolymer albumin for diagnosis and in drug delivery. Drug Dev Res 58(3):219–247 doi:10.1002/ddr.10157

    Article  Google Scholar 

  9. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114:1–14 doi:10.1016/j.jconrel.2006.04.017

    Article  PubMed  CAS  Google Scholar 

  10. Anderson JP, Griffiths M, Boveia VR (2006) Near-infrared fluorescence enhancement using silver island films. Plasmonics 1:103–110 doi:10.1007/s11468-006-9018-3

    Article  CAS  Google Scholar 

  11. Stranik O, Nooney R, McDonagh C, MacCraith BD (2007) Optimization of nanoparticle size for plasmonic enhancement of fluorescence. Plasmonics 2:15–22 doi:10.1007/s11468-006-9020-9

    Article  CAS  Google Scholar 

  12. Parfenov A, Gryczynski I, Malicka J, Geddes CD, Lakowicz JR (2003) Enhanced fluorescence from fluorophores on fractal silver surfaces. J Phys Chem B 107(34):8829–8833 doi:10.1021/jp022660r

    Article  CAS  Google Scholar 

  13. Malicka J, Gryczynski I, Lakowicz JR (2003) DNA hybridization assays using metal-enhanced fluorescence. Biochem Biophys Res Commun 306(1):213–218 doi:10.1016/S0006-291X(03)00935-5

    Article  PubMed  CAS  Google Scholar 

  14. Geddes CD, Lakowicz JR (2002) Editorial: metal-enhanced fluorescence. J Fluoresc 12(2):121–129 doi:10.1023/A:1016875709579

    Article  Google Scholar 

  15. Malicka J, Gryczynski I, Fang JY, Kusba J, Lakowicz JR (2002) Photostability of Cy3 and Cy5-labeled DNA in the presence of metallic silver particles. J Fluoresc 12(3–4):439–447 doi:10.1023/A:1021370111590

    Article  CAS  Google Scholar 

  16. Geddes CD, Parfenov A, Gryczynski I, Lakowicz JR (2003) Luminescent blinking from silver nanostructures. J Phys Chem B 107(37):9989–9993 doi:10.1021/jp030290g

    Article  CAS  Google Scholar 

  17. Aslan K, Holley P, Geddes CD (2006) Microwave-accelerated metal-enhanced fluorescence (MAMEF) with silver colloids in 96-well plates: application to ultra fast and sensitive immunoassays, high throughput screening and drug discovery. J Immunol Methods 312:137–147 doi:10.1016/j.jim.2006.03.009

    Article  PubMed  CAS  Google Scholar 

  18. Geddes CD, Cao H, Gryczynski I, Gryczynski Z, Lakowicz JR (2006) Metal-enhanced fluorescence (mef) due to silver colloids on a planar surface: potential applications of indocyanine green to in vivo imaging. J Phys Chem A 107(18):3443–3449 doi:10.1021/jp022040q

    Article  Google Scholar 

  19. Lakowicz JR, Shen B, D’Auria S, Malicka J, Fang J, Gryczynski Z et al (2002) Radiative decay engineering: 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301:261–277 doi:10.1006/abio.2001.5503

    Article  PubMed  CAS  Google Scholar 

  20. Lakowicz JR, Shen B, Gryczynski Z, D’Auria S, Gryczynaltered I (2001) Intrinsic fluorescence from DNA can be enhanced by metallic particles. Biochem Biophys Res Commun 286(5):875–879 doi:10.1006/bbrc.2001.5445

    Article  PubMed  CAS  Google Scholar 

  21. Axelrod D, Burghardt TP, Thompson NL (1984) Total internal reflection fluorescence. Annu Rev Biophys Bioeng 13:247–268 doi:10.1146/annurev.bb.13.060184.001335

    Article  PubMed  CAS  Google Scholar 

  22. Hlady V, Reinecke DR, Andrade JD (1986) Fluorescence of adsorbed protein layers—I. Quantitation of total internal reflection fluorescence. J Colloid Interface Sci 111(2):555–569 doi:10.1016/0021-9797(86)90059-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Natural Science Foundations of China (20575035) and Shandong Province (Y2003B02) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Wu or Jinghe Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Wu, X., Ding, H. et al. The Fluorescence Enhancement of the Protein Adsorbed on the Surface of Ag Nanoparticle. J Fluoresc 19, 111–117 (2009). https://doi.org/10.1007/s10895-008-0392-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0392-4

Keywords

Navigation