Skip to main content
Log in

Synthesis and Chiral Recognition Properties of Novel Fluorescent Chemosensors for Amino Acid

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The charge neutral chiral optical sensors 1ad containing thiourea and amide groups were synthesized by simple steps in good yields and their structures were characterized by IR, 1H NMR, 13C NMR, MS spectra and elemental analysis. The enantioselective recognition for α-phenylglycine and phenylglycinol was examined by fluorescence emission and UV-vis spectra. The fluorescence and UV-vis spectra changes of 1a were obvious when the enantiomers of α-phenylglycine anion were added, which exhibited that 1a has good enantioselective recognition ability towards α-phenylglycine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. de Silva AP, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  2. Collins AN, Sheldrake GN, Crosby J (1997) Chirality in industry. Wiley, Chichester

    Google Scholar 

  3. Martinez-Manez R, Sancenon F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103:4419–4476

    Article  PubMed  CAS  Google Scholar 

  4. Zhao JZ, Davidson MG, Mahon MF, Kociok-Kohn G, James TD (2004) An enantioselective fluorescent sensor for sugar acids. J Am Chem Soc 126:16179–16186

    Article  PubMed  CAS  Google Scholar 

  5. Zhang XX, Bradshaw JS, Izatt RM (1997) Enantiomeric recognition of amine compounds by chiral macrocyclic receptors. Chem Rev 97:3313–3361

    Article  PubMed  CAS  Google Scholar 

  6. Kim KS, Kim BH, Park WM, Cho SJ (1993) Origin of diastereoselectivity in the nitrile oxide cycloadditions with Oppolzer’s chiral sultams: coulombic interaction as the key role in diastereofacial differentiation. J Am Chem Soc 115:7472–7477

    Article  CAS  Google Scholar 

  7. Famulok M, Szostak JW (1992) Stereospecific recognition of tryptophan agarose by in vitro selected RNA. J Am Chem Soc 114:3990–3991

    Article  CAS  Google Scholar 

  8. Fitzmaurice RJ, Kyne GM, Douheret D, Kilburn JD (2002) Synthetic receptors for carboxylic acids and carboxylates. J Chem Soc, Perkin Trans 1:841–864

    Article  Google Scholar 

  9. You JS, Yu XQ, Zhang GL, Xiang QX, Lan JB, Xie RG (2001) Novel chiral imidazole cyclophane receptors: synthesis and enantioselective recognition for amino acid derivatives. Chem Commun 2001:1816–1817

    Article  Google Scholar 

  10. Li ZB, Lin J, Zhang HC, Sabat M, Hyacinth M, Pu L (2004) Macrocyclic bisbinaphthyl fluorophores and their acyclic analogues: signal amplification and chiral recognition. J Org Chem 69:6284–6293

    Article  PubMed  CAS  Google Scholar 

  11. Yakovenko AV, Boyko VI, Kalchenko VI, Baldini L, Casnati A, Sansone F, Ungaro R (2007) N-linked peptidocalix[4]arene bisureas as enantioselective receptors for amino acid derivatives. J Org Chem 72:3223–3231

    Article  PubMed  CAS  Google Scholar 

  12. Pu L (2004) Fluorescence of organic molecules in chiral recognition. Chem Rev 104:1687–1716

    Article  PubMed  CAS  Google Scholar 

  13. Martinez-Manez R, Sancenon F (2005) New advances in fluorogenic anion chemosensors. J Fluoresc 15:267–285

    Article  PubMed  CAS  Google Scholar 

  14. Gunnlaugsson T, Ali HDP, Glynn M, Kruger PE, Hussey GM, Pfeffer FM, Santos CMG, Tierney J (2005) Fluorescent photoinduced electron transfer (PET) sensors for anions; from design to potential application. J Fluoresc 15:287–299

    Article  PubMed  CAS  Google Scholar 

  15. Gunnlaugsson T, Davis AP, Glynn M (2001) Fluorescent photoinduced electron transfer (PET) sensing of anions using charge neutral chemosensors. Chem Commun 2001:2556–2557

    Article  Google Scholar 

  16. Bhattacharyya T, Nilsson UJ (2001) An efficient and convergent route towards water-soluble, chiral and amphiphilic macrocycles. Tetrahedron Lett 42:2873–2875

    Article  CAS  Google Scholar 

  17. Narumi F, Hattori T, Matsumura N, Onodera T, Katagiri H, Kabuto C, Kameyama H, Miyano S (2004) Synthesis of an inherently chiral O,O’-bridged thiacalix[4] crown carboxylic acid and its application to a chiral solvating agent. Tetrahedron 60:7827–7833

    Article  CAS  Google Scholar 

  18. Sessler JL, Cho DG, Lynch V (2006) Diindolylquinoxalines: effective indole-based receptors for phosphate anion. J Am Chem Soc 128:16518–16519

    Article  PubMed  CAS  Google Scholar 

  19. Pfeffer FM, Lim KF, Sedgwick KJ (2007) Indole as a scaffold for anion recognition. Org Biomol Chem 5:1795–1799

    Article  PubMed  CAS  Google Scholar 

  20. Gunnlaugsson T, Davis AP, O'Brien JE, Glynn M (2005) Synthesis and photophysical evaluation of charge neutral thiourea or urea based fluorescent PET sensors for bis-carboxylates and pyrophosphate. Org Biomol Chem 3:48–56

    Article  PubMed  CAS  Google Scholar 

  21. Kubo Y, Tsukahara M, Ishihara S, Tokita S (2000) A simple anion chemosensor based on a naphthalene-thiouronium dyad. Chem Commun 2000:653–654

    Article  Google Scholar 

  22. Kubo Y, Ishihara S, Tsukahara M, Tokita S (2002) Isothiouronium-derived simple fluorescent chemosensors of anions. J Chem Soc Perkin Trans 2:1455–1460

    Google Scholar 

  23. Xu KX, Wu XJ, He YB, Liu SY, Qing GY, Meng LZ (2005) Synthesis and chiral recognition of novel chiral fluorescence receptors bearing 9-anthryl moieties. Tetrahedron Asymmetry 16:833–839

    Article  CAS  Google Scholar 

  24. Nishizawa S, Kato R, Hayashita T, Teramae N (1998) Anion sensing by a thiourea based chromoionophore via hydrogen bonding. Anal Sci 14:595–597

    Article  CAS  Google Scholar 

  25. Huang XH, He YB, Chen ZH, Hu CG, Qing GY (2008) Novel chiral fluorescent chemosensors for malate and acidic amino acids based on two-arm thiourea and amide. Can J Chem 86:170–176

    Article  CAS  Google Scholar 

  26. Braun D, Rettig W, Delmond S, Letard JF, Lapouyade R (1997) Amide derivatives of DMABN: a new class of dual fluorescent compounds. J Phys Chem A 101:6836–6841

    Article  CAS  Google Scholar 

  27. Malval JP, Lapouyade R (2001) Derivatization of 4-(dimethylamino)benzamide to dual fluorescent ionophores: divergent spectroscopic effects dependent on N or O amide chelation. Helv Chim Acta 84:2439–2451

    Article  CAS  Google Scholar 

  28. Schneider HJ, Yatsimirsky AK (2000) Principles and methods in supramolecular chemistry. Wiley, New York

    Google Scholar 

  29. Valeur B, Pouget J, Bourson J, Kaschke M, Ernsting NP (1992) Tuning of photoinduced energy transfer in a bichromophoric coumarin supermolecule by cation binding. J Phys Chem 96:6545–6549

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation for financial support (Grant No. 20572080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Bing He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

a Fluorescence spectra of receptor 1a (5 × 10−5 mol L−1) with l-Phol in DMSO. b Fluorescence spectra of receptor 1a (5 × 10−5 mol L−1) with d-Phol in DMSO. (DOC 126 kb)

Fig. S2

a Fluorescence spectra of receptor 1b (5 × 10−5 mol L−1) with l-Phol in DMSO. b Fluorescence spectra of receptor 1b (5 × 10−5 mol L−1) with d-Phol in DMSO. (DOC 147 kb)

Fig. S3

a Fluorescence spectra of receptor 1c (5 × 10−5 mol L−1) with l-Phe in DMSO. b Fluorescence spectra of receptor 1c (5 × 10−5 mol L−1) with d-Phe in DMSO. (DOC 106 kb)

Fig. S4

a Fluorescence spectra of receptor 1c (5×10−5 mol L−1) with l-Phol in DMSO. b Fluorescence spectra of receptor 1c (5 × 10−5 mol L−1) with d-Phol in DMSO. (DOC 124 kb)

Fig. S5

a Fluorescence spectra of receptor 1d (5 × 10−5 mol L−1) with l-Phe in DMSO. b Fluorescence spectra of receptor 1d (5 × 10−5 mol L−1) with d-Phe in DMSO. (DOC 112 kb)

Fig. S6

a UV–vis absorption spectra of receptor 1b (5 × 10−5 mol L−1) with l-Phe in DMSO. b UV–vis absorption spectra of receptor 1b (5 × 10−5 mol L−1) with d-Phe in DMSO. (DOC 70.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, XH., He, YB., Hu, CG. et al. Synthesis and Chiral Recognition Properties of Novel Fluorescent Chemosensors for Amino Acid. J Fluoresc 19, 97–104 (2009). https://doi.org/10.1007/s10895-008-0385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0385-3

Keywords

Navigation