Skip to main content
Log in

Frequency-Domain Fluorescence Lifetime Measurements via Frequency Segmentation and Recombination as Applied to Pyrene with Dissolved Humic Materials

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this study, the association behavior of pyrene with different dissolved humic materials (DHM) was investigated utilizing the recently developed segmented frequency-domain fluorescence lifetime method. The humic materials involved in this study consisted of three commercially available International Humic Substances Society standards (Suwannee River fulvic acid reference, SRFAR, Leonardite humic acid standard, LHAS, and Florida peat humic acid standard, FPHAS), the peat derived Amherst humic acid (AHA), and a chemically bleached Amherst humic acid (BAHA). It was found that the three commercial humic materials displayed three lifetime components, while both Amherst samples displayed only two lifetime components. In addition, it was found that the chemical bleaching procedure preferentially removed red wavelength emitting fluorophores from AHA. In regards to pyrene association with the DHM, different behavior was found for all commercially available humics, while AHA and BAHA, which displayed strikingly similar behavior in terms of fluorescence lifetimes. It was also found that there was an enhancement of pyrene’s measured lifetime (combined with a decrease in pyrene emission) in the presence of FPHAS. The implications of this long lifetime are discussed in terms of (1) quenching mechanism and (2) use of the fluorescence quenching method used to determine the binding of compounds to DHM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Buffle J (1981) Complexation reactions in aquatic systems: an analytical approach, Ellis Horwood, Chichester, 1st edn. Ellis Horwood, Ltd., UK

    Google Scholar 

  2. Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions, 2nd edn. Wiley, New York

    Google Scholar 

  3. Xing B, Pignatello JJ, Gigliotti B (1996) Competitive sorption between atrazine and other organic compounds in soils and model sorbents. Environ Sci Technol 30(8):2432–2440

    Article  CAS  Google Scholar 

  4. Weber WJ Jr, Huang W (1996) A distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions. Environ Sci Technol 30(3):881–888

    Article  CAS  Google Scholar 

  5. Huang W, Weber WJ Jr (1997) A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains. Environ Sci Technol 31(9):2562–2569

    Article  CAS  Google Scholar 

  6. Xing B, Pignatello JJ (1997) Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environ Sci Technol 31(3):792–799

    Article  CAS  Google Scholar 

  7. Huang W, Young TM, Schlautman MA, Yu H, Weber WJ Jr (1997) A distributed reactivity model for sorption by soils and sediments. 9. General isotherm nonlinearity and applicability of the dual reactive domain model. Environ Sci Technol 31(6):1703–1710

    Article  CAS  Google Scholar 

  8. Graber ER, Borisover MD (1998) Evaluation of the glassy/rubbery model for soil organic matter. Environ Sci Technol 32(21):3286–3292

    Article  CAS  Google Scholar 

  9. Engebretson RR, von Wandruszka R (1994) Micro-organization in dissolved humic acids. Environ Sci Technol 28(11):1934–1941

    Article  CAS  Google Scholar 

  10. Chin Y-P, Aiken GR, Danielsen KM (1997) Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity. Environ Sci Technol 31(6):1630–1635

    Article  CAS  Google Scholar 

  11. Chiou CT, McGroddy SE, Kile DE (1998) Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environ Sci Technol 32(2):264–269

    Article  CAS  Google Scholar 

  12. Perminova IV, Grechishcheva NY, Petrosyan VS (1999) Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons: relevance of molecular descriptors. Environ Sci Technol 33(21):3781–3787

    Article  CAS  Google Scholar 

  13. Perminova IV, Grechishcheva NY, Kovalevskii DV, Kudryavtsev AV, Petrosyan VS, Matorin DN (2001) Quantification and prediction of the detoxifying properties of humic substances related to their chemical binding to polycyclic aromatic hydrocarbons. Environ Sci Technol 35(19):3841–3848

    Article  PubMed  CAS  Google Scholar 

  14. Drewes JE, Croue JP (2002) New approaches for structural characterization of organic matter in drinking water and wastewater effluents. Water Sci Technol: Water Supply 2(2):1–10

    CAS  Google Scholar 

  15. Holbrook RD, Love NG, Novak JT (2004) Investigation of sorption behavior between pyrene and colloidal organic carbon from activated sludge processes. Environ Sci Technol 38(19):4987–4994

    Article  PubMed  CAS  Google Scholar 

  16. Chefetz B, Deshmukh AP, Hatcher PG, Guthrie EA (2000) Pyrene sorption by natural organic matter. Environ Sci Technol 34(14):2925–2930

    Article  CAS  Google Scholar 

  17. Hu W-G, Mao J, Xing B, Schmidt-Rohr K (2000) Poly(methylene) crystallites in humic substances detected by nuclear magnetic resonance. Environ Sci Technol 34(3):530–534

    Article  CAS  Google Scholar 

  18. Wang K, Xing B (2005) Structural and sorption characteristics of adsorbed humic acid on clay minerals. J Environ Qual 34(1):342–349

    Article  PubMed  CAS  Google Scholar 

  19. Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39(23):9009–9015

    Article  PubMed  CAS  Google Scholar 

  20. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum, New York

    Google Scholar 

  21. Gauthier TD, Shane EC, Guerin WF, Seitz WR, Grant CL (1986) Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ Sci Technol 20(11):1162–1166

    Article  CAS  Google Scholar 

  22. Puchalski MM, Morra MJ, Von Wandruszka R (1992) Fluorescence quenching of synthetic organic compounds by humic materials. Environ Sci Technol 26(9):1787–1792

    Article  CAS  Google Scholar 

  23. Doll TE, Frimmel FH, Kumke MU, Ohlenbusch G (1999) Interaction between natural organic matter (NOM) and polycyclic aromatic compounds (PAC). Comparison of fluorescence quenching and solid phase micro extraction (SPME). Fresenius J Anal Chem 364(4):313–319

    Article  CAS  Google Scholar 

  24. Laor Y, Rebhun M (2002) Evidence for nonlinear binding of PAHs [polycyclic aromatic hydrocarbons] to dissolved humic acids. Environ Sci Technol 36(5):955–961

    Article  PubMed  CAS  Google Scholar 

  25. Peuravuori J (2001) Partition coefficients of pyrene to lake aquatic humic matter determined by fluorescence quenching and solubility enhancement. Anal Chim Acta 429(1):65–73

    Article  CAS  Google Scholar 

  26. Pan B, Xing B, Liu W, Xing G, Tao S (2007) Investigating interactions of phenanthrene with dissolved organic matter: limitations of Stern–Volmer plot. Chemosphere 69(10):1555–1562

    Article  PubMed  CAS  Google Scholar 

  27. Mackenzie K, Georgi A, Kumke M, Kopinke F-D (2002) Sorption of pyrene to dissolved humic substances and related model polymers. 2. Solid-phase microextraction (SPME) and fluorescence quenching technique (FQT) as analytical methods. Environ Sci Technol 36(20):4403–4409

    Article  PubMed  CAS  Google Scholar 

  28. Ganaye VA, Keiding K, Viriot M-L, Vogel TM, Block J-C (1997) Evaluation of soil organic matter polarity by pyrene fluorescence spectrum variations. Environ Sci Technol 31(10):2701–2706

    Article  CAS  Google Scholar 

  29. Sierra MMD, Rauen TG, Tormen L, Debacher NA, Soriano-Sierra EJ (2005) Evidence from surface tension and fluorescence data of a pyrene-assisted micelle-like assemblage of humic substances. Water Res 39(16):3811–3818

    Article  PubMed  CAS  Google Scholar 

  30. Backhus DA, Golini C, Castellanos E (2003) Evaluation of fluorescence quenching for assessing the importance of interactions between nonpolar organic pollutants and dissolved organic matter. Environ Sci Technol 37(20):4717–4723

    Article  PubMed  CAS  Google Scholar 

  31. Tiller CL, Jones KD (1997) Effects of dissolved oxygen and light exposure on determination of Koc values for PAHs using fluorescence quenching. Environ Sci Technol 31(2):424–429

    Article  CAS  Google Scholar 

  32. Marwani HM, Lowry M, Keating P, Warner IM, Cook RL (2007) Segmented frequency-domain fluorescence lifetime measurements: minimizing the effects of photobleaching within a multi-component system. J Fluoresc 17(6):687–699

    Article  PubMed  CAS  Google Scholar 

  33. Chen S, Inskeep WP, Williams SA, Callis PR (1994) Fluorescence lifetime measurements of fluoranthene, 1-naphthol, and napropamide in the presence of dissolved humic acid. Environ Sci Technol 28(9):1582–1588

    Article  CAS  Google Scholar 

  34. Kumke MU, Loehmannsroeben HG, Roch T (1995) Fluorescence spectroscopy of polynuclear aromatic compounds in environmental monitoring. J Fluoresc 5(2):139–153

    Article  CAS  Google Scholar 

  35. Nakashima K, Maki M, Ishikawa F, Yoshikawa T, Gong YK, Miyajima T (2007) Fluorescence studies on binding of pyrene and its derivatives to humic acid. Spectrochim Acta, Part A: Mol Biomol Spectrosc 67A(3–4):930–935

    Article  CAS  Google Scholar 

  36. Gunasekara AS, Simpson MJ, Xing B (2003) Identification and characterization of sorption domains in soil organic matter using structurally modified humic acids. Environ Sci Technol 37(5):852–858

    Article  PubMed  CAS  Google Scholar 

  37. Beechem JM (1989) A second generation global analysis program for the recovery of complex inhomogeneous fluorescence decay kinetics. Chem Phys Lipids 50(3–4):237–251

    Article  PubMed  CAS  Google Scholar 

  38. Beechem JM, Gratton E (1988) Fluorescence spectroscopy data analysis environment: a second generation global analysis program. Proceedings of SPIE-The International Society for Optical Engineering 909 (Time-Resolved Laser Spectrosc. Biochem.):70–81

  39. Cook RL, Langford CH (1995) Metal ion quenching of fulvic acid fluorescence intensities and lifetimes: Nonlinearities and a possible three-component model. Anal Chem 67(1):174–180

    Article  CAS  Google Scholar 

  40. Hemmingsen SL, McGown LB (1997) Phase-resolved fluorescence spectral and lifetime characterization of commercial humic substances. Appl Spectrosc 51(7):921–929

    Article  CAS  Google Scholar 

  41. Hewitt JD, McGown LB (2003) On-the-fly fluorescence lifetime detection of humic substances in capillary electrophoresis. Appl Spectrosc 57(3):256–265

    Article  PubMed  CAS  Google Scholar 

  42. Kumke MU, Tiseanu C, Abbt-Braun G, Frimmel FH (1998) Fluorescence decay of natural organic matter (NOM)—influence of fractionation, oxidation, and metal ion complexation. J Fluoresc 8(4):309–318

    Article  CAS  Google Scholar 

  43. Piccolo A, Conte P, Trivellone E, van Lagen B, Buurman P (2002) Reduced heterogeneity of a lignite humic acid by preparative hpsec following interaction with an organic acid. Characterization of size-separates by PYR-GC-MS and 1H NMR spectroscopy. Environ Sci Technol 36(1):76–84

    Article  PubMed  CAS  Google Scholar 

  44. Lee C-L, Kuo L-J, Wang H-L, Hsieh P-C (2003) Effects of ionic strength on the binding of phenanthrene and pyrene to humic substances: three-stage variation model. Water Res 37(17):4250–4258

    Article  PubMed  CAS  Google Scholar 

  45. Ariese F, Van Assema S, Gooijer C, Bruccoleri AG, Langford CH (2004) Comparison of Laurentian fulvic acid luminescence with that of the hydroquinone/quinone model system: evidence from low temperature fluorescence studies and EPR spectroscopy. Aquatic Sciences 66(1):86–94

    Article  CAS  Google Scholar 

  46. Del Vecchio R, Blough NV (2004) On the origin of the optical properties of humic substances. Environ Sci Technol 38(14):3885–3891

    Article  PubMed  CAS  Google Scholar 

  47. Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39(21):8142–8149

    Article  PubMed  CAS  Google Scholar 

  48. Turro NJ (1991) Modern molecular photochemistry, 1st edn. University Science Books, California

    Google Scholar 

  49. Nelson G, Patonay G, Warner IM (1988) Effects of selected alcohols on cyclodextrin inclusion complexes of pyrene using fluorescence lifetime measurements. Anal Chem 60(3):274–279

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Robert L. Cook acknowledges the Louisiana Education Quality Support Fund (LEQSF [2004–07]-RD-A-07), the National Science Foundation (CHE-0547982), and the United States Department of Agriculture (CSRESS 2005-35107-15278). Isiah M. Warner acknowledges the National Science Foundation, the National Institutes of Health, and the Philip W. West Endowment for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Cook.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2.96 MB) Supplementary information. Additional fluorescence lifetime data and fits of DHM individual components and pyrene and DHM mixtures, spectral information of pyrene and DHM individual components and their mixtures are provided.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marwani, H.M., Lowry, M., Xing, B. et al. Frequency-Domain Fluorescence Lifetime Measurements via Frequency Segmentation and Recombination as Applied to Pyrene with Dissolved Humic Materials. J Fluoresc 19, 41–51 (2009). https://doi.org/10.1007/s10895-008-0377-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0377-3

Keywords

Navigation