Skip to main content
Log in

A Simple Spectrofluorometric Assay to Measure Total Intracellular Magnesium by a Hydroxyquinoline Derivative

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The intracellular behaviour of diaza-18-crown-6 appended with two H-substituted hydroxyquinoline groups (DCHQ1) was investigated to explore its application as a new sensor for the evaluation of cell magnesium content and distribution. We used five cells lines characterised by different contents of magnesium and different intracellular membrane-defined compartments. The main result is the definition of the appropriate experimental conditions to quantitatively assess the total cell magnesium by fluorescence spectroscopy. We showed that disrupting cells by sonication, DCHQ1 was capable to assess total cell magnesium in all cell types examined, obtaining overlapping results with atomic absorption spectroscopy (AAS). This new analytical approach requires very small cell samples and a simple fluorimetric technique, and can be a valid alternative to AAS. The fluorescent properties of DCHQ1 in living cells are: (a) it consistently stains live cells, (b) it discriminates small variations of cell Mg contents, (c) cell staining is stable for at least 30 min. We also investigated the role of lipophilic environment on DCHQ1 fluorescence by mimicking cell membranes and described how the composition and structure of lipid vesicles affect Mg-DCHQ1 fluorescence. Thus, DCHQ1 may offer important information also on magnesium distribution in living cells, providing a novel strategy to map the intracellular compartmentalization of this cation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. “Magnesium” or “Mg” refer to the total pool of magnesium, i.e. free plus bound forms; “Mg2+” refers specifically to the ionized or free form.

References

  1. Wolf FI, Cittadini A (2003) Chemistry and biochemistry of magnesium. Mol Aspects Med 24:3–9

    Article  PubMed  CAS  Google Scholar 

  2. Romani AM (2007) Regulation of magnesium homeostasis and transport in mammalian cells. Arch Biochem Biophys 458:90–102

    Article  PubMed  CAS  Google Scholar 

  3. Cowan JA, Maguire ME (2002) Magnesium chemistry and biochemistry. BioMetals 15:203–210

    Article  PubMed  Google Scholar 

  4. Huang H-W, Cowan JA (1994) Metallobiochemistry of the magnesium ion. Characterization of the essential metal-binding site in E. coli ribonuclease. H Eur J Biochem 219:253–260

    Article  CAS  Google Scholar 

  5. Wolf FI, Fasanella S, Tedesco B, Torsello A, Sgambato A, Faraglia B, Palozza P, Boninsegna A, Cittadini A (2004) Regulation of magnesium content during proliferation of mammary epithelial cells (HC11). Front Biosci 9:2056–2062

    Article  PubMed  CAS  Google Scholar 

  6. Rubin H (2005) The membrane, magnesium, mitosis (MMM) model of cell proliferation control. Magnes Res 18:268–274

    PubMed  CAS  Google Scholar 

  7. Toyuz RM (2004) Magnesium in clinical medicine. Front Biosci 1:1278–1293

    Article  Google Scholar 

  8. Rayssiguier Y, Gueux E, Nowacki W, Rock E, Mazur A (2006) High fructose consumption combined with low dietary magnesium intake may increase the incidence of the metabolic syndrome by inducing inflammation. Magnes Res 19:237–243

    PubMed  CAS  Google Scholar 

  9. Barbagallo M, Dominguez LJ (2007) Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch Biochem Biophys 458:40–47

    Article  PubMed  CAS  Google Scholar 

  10. Chubanov V, Schlingmann KP, Waring J, Heinzinger J, Kaske S, Waldegger S, Schnitzler MM, Gudermann T (2007) Hypomagnesemia with secondary hypocalcemia due to a missense mutation in the putative pore-forming region of TRPM6. J Biol Chem 282:7656–7667

    Article  PubMed  CAS  Google Scholar 

  11. Hsu YJ, Hoenderop JG, Bindels RJ (2007) TRP channels in kidney disease. Biochim Biophys Acta 1772:928–936

    PubMed  CAS  Google Scholar 

  12. Wolf FI (2004) TRPM7: channeling the future of cellular magnesium homeostasis? Sci STKE 233:pe23

    Article  Google Scholar 

  13. Maguire ME (2006) Magnesium transporters: properties, regulation and structure. Front Biosci 11:3149–3163

    Article  PubMed  CAS  Google Scholar 

  14. Topala CN, Groenestege WT, Thebault S, van den Berg D, Nilius B, Hoenderop JG, Bindels RJ (2007) Molecular determinants of permeation through the cation channel TRPM6. Cell Calcium 41:513–523

    Article  PubMed  CAS  Google Scholar 

  15. Fatholahi M, LaNoue K, Romani A, Scarpa A (2000) Relationship between total and free cellular Mg(2+) during metabolic stimulation of rat cardiac myocytes and perfused hearts. Arch Biochem Biophys 374:395–401

    Article  PubMed  CAS  Google Scholar 

  16. Wolf FI, Covacci V, Bruzzese N, Di Francesco A, Sacchetti A, Corda D, Cittadini A (1998) Differentiation of HL-60 promyelocytic leukemia cells is accompanied by a modification of magnesium homeostasis. J Cell Biochem 71:441–448

    Article  PubMed  CAS  Google Scholar 

  17. Kubota T, Shindo Y, Tokuno K, Komatsu H, Ogawa H, Kudo S, Kitamura Y, Suzuki K, Oka K (2005) Mitochondria are intracellular magnesium stores: investigation by simultaneous fluorescent imagings in PC12 cells. Biochim Biophys Acta 1744:19–28

    Article  PubMed  CAS  Google Scholar 

  18. Gupta RK, Gupta P, Moore RD (1984) NMR studies of intracellular metal ions in intact cells and tissues. Annu Rev Biophys Bioeng 13:221–246

    Article  PubMed  CAS  Google Scholar 

  19. Iotti S, Frassineti C, Alderighi L, Sabatini A, Vacca A, Barbiroli B (1996) In vivo assessment of free magnesium concentration in human brain by 31P MRS. A new calibration curve based on a mathematical algorithm. NMR Biomed 9:24–32

    Article  PubMed  CAS  Google Scholar 

  20. Iotti S, Frassineti C, Alderighi L, Sabatini A, Vacca A, Barbiroli B (2000) In vivo 31P-MRS assessment of cytosolic [Mg2+] in the human skeletal muscle in different metabolic conditions. Magn Reson Imaging 18:607–614

    Article  PubMed  CAS  Google Scholar 

  21. Haugland RP (2005) In: The handbook. A guide to fluorescent probes and labeling technologies, 10th edn. Molecular Probes, Eugene

  22. Hurley TW, Ryan MP, Brinck RW (1992) Changes of cytosolic Ca2+ interfere with measurements of cytosolic Mg2+ using mag-fura-2. Am J Physiol 263:C300–C307

    PubMed  CAS  Google Scholar 

  23. Csernoch L, Bernengo JC, Szentesi P, Jacquemond V (1998) Measurements of intracellular Mg2+ concentration in mouse skeletal muscle fibers with the fluorescent indicator mag-indo-1. Biophys J 75:957–967

    Article  PubMed  CAS  Google Scholar 

  24. Komatsu H, Iwasawa N, Citterio D, Suzuki Y, Kubota T, Tokuno K, Kitamura Y, Oka K, Suzuki K (2004) Design and synthesis of highly sensitive and selective fluorescein-derived magnesium fluorescent probes and application to intracellular 3D Mg2+ imaging. J Am Chem Soc 126:16353–16360

    Article  PubMed  CAS  Google Scholar 

  25. Komatsu H, Miki T, Citterio D, Kubota T, Shindo Y, Kitamura Y, Oka K, Suzuki K (2005) Single molecular multianalyte (Ca2+, Mg2+) fluorescent probe and applications to bioimaging. J Am Chem Soc 127:10798–10799

    Article  PubMed  CAS  Google Scholar 

  26. Kim HM, Jung C, Kim BR, Jung SY, Hong JH, Ko YG, Lee KJ, Cho BR (2007) Environment-sensitive two-photon probe for intracellular free magnesium ions in live tissue. Angew Chem Int Ed 46:3460–3463

    Article  CAS  Google Scholar 

  27. Kim HM, Yang PR, Seo MS, Yi JS, Hong JH, Jean SJ, Ko YG, Lee KJ, Cho BR (2007) Magnesium ion selective two-photon fluorescent probe based on a benzo[h]chromene derivative for in vivo imaging. J Org Chem 72:2088–2096

    Article  PubMed  CAS  Google Scholar 

  28. Morelle B, Salmon JM, Vigo J, Viallet P (1994) Are intracellular ionic concentrations accessible using fluorescence probes? The example of Mag-indo 1. Cell Biol Toxycol 10:339–344

    Article  CAS  Google Scholar 

  29. Zhao M, Hollingworth S, Baylor SM (1996) Properties of try- and tetracarboxylate Ca2+ indicators in frog skeletal muscle fibers. Biophys J 70:896–916

    Article  PubMed  CAS  Google Scholar 

  30. Jung DW, Chapman CJ, Baysal K, Pfeiffer DR, Brierley GP (1996) On the use of fluorescent probes to estimate free Mg2+ in the matrix of heart mitochondria. Arch Biochem Biophys 332:19–29

    Article  PubMed  CAS  Google Scholar 

  31. Bordunov AV, Bradshaw JS, Zhang XX, Dalley NK, Kou X, Izatt RM (1996) Synthesis and properties of 5-chloro-8-hydroxyquinoline-substituted azacrown ethers: a new family of highly metal ion-selective lariat ethers. Inorg Chem 35:7229–7240

    Article  PubMed  CAS  Google Scholar 

  32. Prodi L, Bolletta F, Montalti M, Zaccheroni N, Bradshaw JS, Savage PB, Izatt RM (1998) A fluorescent sensor for magnesium ions. Tetrahedron Lett 39:5451–5454

    Article  CAS  Google Scholar 

  33. Prodi L (2005) Luminescent chemosensors: from molecules to nanoparticles. New J Chem 29:20–31

    Article  CAS  Google Scholar 

  34. Farruggia G, Iotti S, Prodi L, Montalti M, Zaccheroni N, Savage PB, Trapani V, Sale P, Wolf FI (2006) 8-Hydroxyquinoline derivatives as fluorescent sensors for magnesium in living cells. J Am Chem Soc 128:344–350

    Article  PubMed  CAS  Google Scholar 

  35. Kaiser SM, Escher BI (2006) The evaluation of liposome-water partitioning of 8-hydroxyquinolines and their copper complexes. Environ Sci Technol 40:1784–1791

    Article  PubMed  CAS  Google Scholar 

  36. Su N, Bradshaw JS, Zhang XX, Song H, Savage PB, Xue G, Krakowiak KE, Izatt RM (1999) Syntheses and metal ion complexation of novel 8-hydroxyquinoline-containing diaza-18-crown-6 ligands and analogues. J Org Chem 64:8855–8861

    Article  PubMed  CAS  Google Scholar 

  37. Feillet-Coudray C, Nasulewicz A, Jaffrelo L, Thien S, Coudray C, Rambeau M, Gueux E, Rayssiguier Y, Opolski A, Wolf FI, Mazur A (2005) Erythrocyte magnesium influx and efflux in solid tumor bearing mice. Magnes Res 18:103–108

    PubMed  CAS  Google Scholar 

  38. Chabot MC, Wykle RL, Modest EJ, Daniel LW (1989) Correlation of ether lipid content of human leukemia cell lines and their susceptibility to 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. Cancer Res 49:4441–4445

    PubMed  CAS  Google Scholar 

  39. Vindelov LL (1977) Flow microfluorometric analysis of nuclear DNA in cells from solid tumors and cell suspensions. A new method for rapid isolation and straining of nuclei. Virchows Arch B Cell Pathol 24:227–242

    PubMed  CAS  Google Scholar 

  40. Credi A, Prodi L (1998) From observed to corrected luminescence intensity of solution systems: an easy-to-apply correction methods for standard spectrofluorimeter. Spectrochim Acta Part A 54:159–170

    Article  Google Scholar 

  41. Montalti M, Credi A, Prodi L, Gandolfi MT (2006) Handbook of photochemistry, 3rd edn. CRC Taylor & Francis, Boca Raton

    Google Scholar 

  42. Manfredi G, Yang L, Gajewski CD, Mattiazzi M (2002) Measurements of ATP in mammalian cell. Methods 26:317–326

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an ex-60% MIUR grant from the University of Bologna to Stefano Iotti, by a PRIN 2004 grant to Stefano Iotti, by the FIRB LATEMAR grant (http://www.latemar.polito.it), and MIUR, Linea D1 grant 2005–2007 to Federica I. Wolf and by Fondazione Cassa di Risparmio di Bologna to Luca Prodi. Cytofluorimetric assays were performed at the Interdepartmental Center for Biotechnological Research of the University of Bologna. We are in debt with Micaela Fabbri for the AAS measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giovanna Farruggia, Stefano Iotti or Federica I. Wolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farruggia, G., Iotti, S., Prodi, L. et al. A Simple Spectrofluorometric Assay to Measure Total Intracellular Magnesium by a Hydroxyquinoline Derivative. J Fluoresc 19, 11–19 (2009). https://doi.org/10.1007/s10895-008-0374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0374-6

Keywords

Navigation