Journal of Fluorescence

, Volume 18, Issue 5, pp 953–959 | Cite as

The Antioxidative Activity of Riboflavin in the Presence of Antipyrin. Spectroscopic Studies

  • Mariana Voicescu
  • Gabriela Ionita
  • Adrian Beteringhe
  • Marilena Vasilescu
  • Aurelia Meghea
Original Paper


The effect of Antipyrin upon the antioxidant activity of the riboflavin has been evidenced using chemiluminescent system luminol–hydrogen peroxide, in Tris–HCl buffer, pH 8.5. It was found that riboflavin antioxidant activity depends on the reaction time and the Antipyrin concentration. Using ESR spectroscopy the hydroxyl radical generation, in the mentioned chemiluminescent system, was evidenced. The interaction between reactants was also investigated by UV-VIS and fluorescence spectroscopy. The effect of Antipyrin concentration upon the riboflavin fluorescence has also been investigated. The fluorescence quenching by Antipyrin is not significant and subsequently the riboflavin fluorescence quenching doesn’t indicate an electron transfer process through diffusion-controlled mechanism. The results are discussed with relevance to the redox processes of riboflavin.


Chemiluminescence Fluorescence Riboflavin Antipyrin Free radicals 


  1. 1.
    McCormick DB (1989) Two interconnects B vitamins: riboflavin and pyridoxine. Physiol Rev 69:1170–1198PubMedGoogle Scholar
  2. 2.
    Peter JV, Awni WM (1991) Quantifiying hepatic function in the presence of liver disease with phenazone (antipyrine) and its metabolites. Clin Pharmacokinet 20(1):50–65CrossRefGoogle Scholar
  3. 3.
    Hartleb (1991) Review article drugs and the liver part II the role of the antipyrine test in drug metabolism studies. Biopharm Drug Disp 12:559–570CrossRefGoogle Scholar
  4. 4.
    Uchino H, Inaba T, Kalow W (1983) Human metabolism of antipyrine labelled with 14C in the pyrazolone ring or in the N-methyl group. Xenobiotica 13(3):155–162PubMedCrossRefGoogle Scholar
  5. 5.
    Danhof M, van Zuilen A, Boeijenga K, Breimer DD (1982) Studies of the different metabolic pathways of antipyrine in man. Oral versus i.v. administration and the influence of urinary collection time. Eur J Clin Pharmacol 21(5):433–441PubMedCrossRefGoogle Scholar
  6. 6.
    Costa D, Marques AP, Reis RL, Lima J, Fernandes E (2006) Inhibition of human neutrophil oxidative burst by pyrazolone derivatives. Free Radic Biol Med 40:632–640PubMedCrossRefGoogle Scholar
  7. 7.
    Voicescu M, Vasilescu M, Meghea A (2000) Energy transfer from the aminophtalate dianion to fluoresceine. J Fluoresc 10:229–236CrossRefGoogle Scholar
  8. 8.
    Voicescu M, Vasilescu M, Constantinescu T, Meghea A (2002) On the luminescence of luminol in DMSO in the presence of potassium superoxide-18 crown 6 ether and fluorescein. J Luminesc 97:60–67CrossRefGoogle Scholar
  9. 9.
    Vasilescu M, Constantinescu T, Voicescu M, Lemmetyinen H, Vuorima E (2003) Spectrophotometric study of luminol in Dimethyl sulfoxide–potassium hydroxide. J Fluoresc 13:315–322CrossRefGoogle Scholar
  10. 10.
    Vasilescu M, Voicescu M, Lemmetyinen H (2004) Steady-state and time-resolved fluorescence of luminol in different solvent mixtures. Rev Roum Chim 49(10):841–849Google Scholar
  11. 11.
    Vasilescu M, Voicescu M, Lemmetyinen H, Meghea A (2004) The oxidative activity of riboflavin studied by luminescence methods. Rom J Biochem 41(1–2):51–63Google Scholar
  12. 12.
    Voicescu M, Meghea A (2004) The effect of cyclodextrins on the riboflavin (Vitamin B2) antioxidative activity. U P B Sci Bull 66:19–24Google Scholar
  13. 13.
    Voicescu M, Ionita G, Vasilescu M, Meghea A (2006) The effect of cyclodextrins on the luminol-hydrogen peroxide chemiluminescence. J Incl Phenom Macrocycl Chem 54:217–219CrossRefGoogle Scholar
  14. 14.
    Voicescu M, Ionita G, Constantinescu T, Vasilescu M (2006) The oxidative activity of riboflavin studied by luminescence methods. The effect of Cysteine, Arginine, Lysine and Histidine. Rev Roum Chim 51(7–8):683–690Google Scholar
  15. 15.
  16. 16.
    Olinescu R, Greabu M (1987) Chemiluminescenta si Bioluminescenta, Ed. Tehnica, BucurestiGoogle Scholar
  17. 17.
    Campbell AK (1988) Chemiluminescence—Principle and Applications in Biology and Medicine. Ellis Horwood, Chichester, EnglandGoogle Scholar
  18. 18.
    Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Chen S, Corpe C, Dutta A, Dutta SK, Levine M (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22:18–35PubMedGoogle Scholar
  19. 19.
    Szejtli J (1998) Introduction and General Overview of Cyclodextrin Chemistry. Chem Rev 98:1743–1753PubMedCrossRefGoogle Scholar
  20. 20.
    Ragozzino PW, Malone MH (1963) Biodynamics of thiourea –alkaloid combinations. J Pharmacol Exp Ther 141:363–368PubMedGoogle Scholar
  21. 21.
    Lu D, Aksimentiev A, Shih AY, Chu EC, Freddolino PL, Arkhipov A, Schulten K (2006) The role of molecular modeling in bionanotechnology. Phys Biol 3:S40–S53PubMedCrossRefGoogle Scholar
  22. 22.
    Chaterjee S, Hadi AS, Price B (2000) In: Regression analysis by examples, 3nd edn., Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mariana Voicescu
    • 1
  • Gabriela Ionita
    • 1
  • Adrian Beteringhe
    • 1
  • Marilena Vasilescu
    • 1
  • Aurelia Meghea
    • 2
  1. 1.Institute of Physical Chemistry, Romanian AcademyBucharestRomania
  2. 2.Department of Applied Physical Chemistry and ElectrochemistryUniversity POLITEHNICA of BucharestBucharestRomania

Personalised recommendations