Skip to main content

Rapid Frequency-Domain FLIM Spinning Disk Confocal Microscope: Lifetime Resolution, Image Improvement and Wavelet Analysis

Abstract

A spinning disk confocal attachment is added to a full-field real-time frequency-domain fluorescence lifetime-resolved imaging microscope (FLIM). This provides confocal 3-D imaging while retaining all the characteristics of the normal 2-D FLIM. The spinning disk arrangement allows us to retain the speed of the normal 2-D full field FLIM while gaining true 3-D resolution. We also introduce the use of wavelet image transformations into the FLIM analysis. Wavelets prove useful for selecting objects according to their morphology, denoising and background subtraction. The performance of the instrument and the analysis routines are tested with quantitative physical samples and examples are presented with complex biological samples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Cundall RB, Dale RE (1983) Time-resolved fluorescence spectroscopy in biochemistry and biology, in NATO ASI series. Series A, Life sciences, vol. 69, F. NATO Advanced Study Institute on Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology (1980: Saint Andrews, Ed. New York: Plenum, p. 785

  2. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer/Plenum , New York

    Google Scholar 

  3. Gadella TWJ, Jovin TM, Clegg RM (1993) Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale. Biophys Chemist 48:221–239

    Article  CAS  Google Scholar 

  4. Szmacinski H, Lakowicz JR (1995) Possibility of simultaneously measuring low and high calcium concentrations using Fura-2 and lifetime-based sensing. Cell Calcium 18:64–75

    PubMed  Article  CAS  Google Scholar 

  5. Zhong W, Urayama P, Mycek MA (2003) Imaging fluorescence lifetime modulation of a ruthenium-based dye in living cells: the potential for oxygen sensing. J Phys D: Appl Phys 36:1689–1695

    Article  CAS  Google Scholar 

  6. Clegg RM, Holub O, Gohlke C (2003) Fluorescence lifetime-resolved imaging: measuring lifetimes in an image. Methods Enzymol 360:509–542

    PubMed  Article  CAS  Google Scholar 

  7. van Munster EB, Gadella TWJ (2005) Fluorescence Lifetime Imaging Microscopy (FLIM). Adv Biochem Eng Biotechnol 95:143–175

    PubMed  Google Scholar 

  8. Suhling K, French PMW, Phillips D (2005) Time-resolved fluorescence microscopy. Photochem Photobiol Sci 4:13–22

    PubMed  Article  CAS  Google Scholar 

  9. Clegg RM, Schneider PC (1996) In: Slavik J (ed) Fluorescence microscopy and fluorescent probes. Plenum, New York, pp 15–33

    Google Scholar 

  10. Redford GI, Clegg RM (2005) In: Periasamy A, Day RN (eds) Molecular imaging: FRET microscopy and spectroscopy. Oxford University Press, New York, pp 193–226

    Google Scholar 

  11. Becker W (2005) Advanced time-correlated single photon counting techniques, in Springer Series in Chemical Physics. Springer, vol 81, p. 401

  12. Marriott G, Clegg RM, Arndt-Jovin DJ, Jovin TM (1991) Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging. Biophys J 60(6):1374–1387

    PubMed  CAS  Google Scholar 

  13. Cubeddu R, Taroni P, Valentini G, Canti G (1991) Use of time-gated fluorescence imaging for diagnosis in biomedicine. J Photochem Photobiol, B Biol 12:109–113

    Article  Google Scholar 

  14. Cubeddu R, Comelli D, D’Andrea C, Taroni P, Valentini G (2002) Time-resolved fluorescence imaging in biology and medicine. J Phys, D, Appl Phys 35:R61–R76

    Article  CAS  Google Scholar 

  15. Gratton E, Breusegem S, Sutin JRQ, Barry NP (2003) Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J of Biomedical Optics 8(3):381–390

    Article  Google Scholar 

  16. Sytsma, Vroom, Grauw d, Gerritsen (1998) Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation. J Microsc 191(1):39–51

    Article  CAS  Google Scholar 

  17. Buurman JM, Knutson JR, Ross JBA, Turner BW, Brand L (1992) Fluorescence lifetime imaging using a confocal laser scanning microscope. Scanning 14:155–159

    Google Scholar 

  18. Piston DW, Sandison DR, Webb WW (1992) Time-resolved fluorescence imaging and background rejection by two-photon excitation in laser scanning microscopy. Proc. SPIE 1604, (Time-resolved Laser Spectroscopy in Biochemistry III), 379–389

  19. Hanson KM, Behne MJ, Barry NP, Mauro TM, Gratton E, Clegg RM (2002) Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys J 83(3):1682–1690

    PubMed  CAS  Google Scholar 

  20. Ghiggino KP, Harris MR, Spizzirri PG (1992) Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope. Rev Sci Instrum 63(5):2999–3002

    Article  CAS  Google Scholar 

  21. Patterson GH, Piston DW (2000) Photobleaching in two-photon excitation microscopy. Biophys J 78:2159–2162

    PubMed  CAS  Google Scholar 

  22. Buranachai C, Clegg RM (2008) In: Rothnagel J (ed) Fluorescent proteins: methods and applications. Humana, pp (in press)

  23. van Munster EB, Goedhart J, Kremers GJ, Manders EMM, Gadella TWJ Jr (2007) Combination of a spinning disc confocal unit with frequency-domain fluorescence lifetime imaging microscopy. Cytometry Part A 71A:207–214

    Article  Google Scholar 

  24. Kawamura S, Negishi H, Otsuki S, Tomosada N (2002) Confocal laser microscope scanner and CCD camera. Yokogawa Technical Report English Edition 33:17–33

    Google Scholar 

  25. Nakano A (2002) Spinning-disk confocal microscopy—A cutting-edge tool for imaging of membrane traffic. Cell Struct Funct 27(5):349–355

    PubMed  Article  Google Scholar 

  26. Graf R, Rietdorf J, Zimmermann T (2005) Live cell spinning disk microscopy. Adv Biochem Eng Biotechnol 95:57–75

    PubMed  Google Scholar 

  27. Inoue S, Inoue T (2002) Direct-view high-speed confocal scanner: The CSU-10. Methods Cell Biol 70:87

    PubMed  Article  Google Scholar 

  28. Wang E, Babbey CM, Dunn KW (2005) Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems. J Microsc 218:148–159

    PubMed  Article  CAS  Google Scholar 

  29. Clayton AHA, Hanley QS, Verveer PJ (2004) Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data. J Microsc 213(1):1–5

    PubMed  Article  CAS  Google Scholar 

  30. Redford GI, Clegg RM (2005) Polar plot representation for frequency-domain analysis of fluorescence lifetimes. J Fluoresc 15(5):805–815

    PubMed  Article  CAS  Google Scholar 

  31. Holub O, Seufferheld MJ, Gohlke C, Govindjee, Heiss GJ, Clegg RM (2007) Fluorescence lifetime imaging microscopy of Chlamydomonas reinhardtii: non-photochemical quenching mutants and the effect of photosynthetic inhibitors on the slow chlorophyll fluorescence transients. J Microsc 226(2):90–120

    PubMed  Article  CAS  Google Scholar 

  32. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics. J Chem Phys 9:341

    Article  CAS  Google Scholar 

  33. von Hippel AR (1954) Dielectrics and waves. Wiley, New York, p xii

    Google Scholar 

  34. Hill NE, Vaughan WE, Price AH, Davies M (1969) Dielectric properties and molecular behavior. van Nostrand, New York

    Google Scholar 

  35. Sjöback R, Nygren J, Kubista M (1995) Absorption and fluorescence properties of fluorescein. Spectrochim Acta, Part A 51:L7–L21

    Article  Google Scholar 

  36. Schneider PC, Clegg RM (1997) Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications. Rev Sci Instrum 68(11):4107–4119

    Article  CAS  Google Scholar 

  37. Mallat SG (1989) A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693

    Article  Google Scholar 

  38. Starck JL, Murtagh F, Bijaoui A (1998) Image processing and data analysis. Cambridge University Press, Cambridge

    Google Scholar 

  39. Starck JL, Bijaoui A (1994) Filtering and deconvolution by the wavelet transform. Signal Processing 35:195–211

    Article  Google Scholar 

  40. Nowak RD, Baraniuk RG (1999) Wavelet-domain filtering for photon imaging systems. IEEE Trans Image process 8(5):666–678

    PubMed  Article  CAS  Google Scholar 

  41. Boutet de Monvel J, Le Calvez S, Ulfendahl M (2001) Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ. Biophys J 80:2455–2470

    PubMed  CAS  Google Scholar 

  42. Shapiro JM (1991) Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Signal Process 41(I2):3445–3462

    Google Scholar 

  43. Grgic S, Grgic M, Zovko-Cihlar B (2001) Performance analysis of image compression using wavelets. IEEE Trans Ind Electron 48(3):682–695

    Article  Google Scholar 

  44. Bernas T, Asem EK, Robinson JP, Rajwa B (2006) Compression of fluorescence microscopy images based on the signal-to-noise estimation. Microsc Res Tech 69:1–9

    PubMed  Article  Google Scholar 

  45. Olivo-Marin J-C (2002) Extraction of spots in biological images using multiscale products. Pattern Recogn 35:1989–1996

    Article  Google Scholar 

  46. Willett RM, Nowak RD (2003) Platelets: a multiscale approach for recovering edges and surfaces in photon-limited medical imaging. IEEE Trans Med Imag 22(3):332–350

    Article  Google Scholar 

  47. Genovesio A, Liedl T, Emiliani V, Parak WJ, Coppey-Moisan M, Olivo-Marin J-C (2006) Multiple particle tracking in 3-D+ t microscopy: method and application to the tracking of endocytosed quantum dots. IEEE Trans Image Process 15(5):1062–1070

    PubMed  Article  Google Scholar 

  48. Walker JS (1997) Fourier analysis and wavelet analysis. Notices of the AMS 44(6):658–670

    Google Scholar 

  49. Hong L (1993) Multi-resolutional filtering using wavelet transform. IEEE Trans Aerosp Electron Syst 29(4):1244–1251

    Article  Google Scholar 

  50. Petrou M, Bosdogianni P (1999) Image processing: the fundamentals. Wiley, New York

    Google Scholar 

  51. Breusegem SY (2002) In vivo investigation of protein interactions in C. elegans by Foerster Resonance Energy Transfer Microscopy, In Biophysics And Computational Biology. Urbana-Champaign: University of Illinois, p 216

  52. Williams BD, Waterston RH (1994) Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. J Cell Biol 124:475–490

    PubMed  Article  CAS  Google Scholar 

  53. Pepperkok R, Squire A, Geley S, Bastiaens PIH (1999) Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. Curr Biol 9(5):269–272

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Glen Redford for his valuable contributions to the non-confocal version of the frequency domain full field FLIM, and his original work on the polar plot. We appreciate discussions with Bryan Spring about wavelets. The work presented here has been partially supported by the NIH grant (PHS 5 P41 RRO3155) and by start-up funds from the UIUC Physics Department (RMC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Clegg.

Supplementary data

Supplementary data

In the case of the conventional wide field frequency-domain lifetime imaging, the homodyne signal recorded at the image intensifier S ave (Eq. 4 of text) is derived, following Schneider et al. [36] as

$$S_{{\text{avg}}} = \left\langle {F\left( t \right) \cdot D(t)} \right\rangle = \frac{1}{T}\int\limits_0^T {\left( {F_0 + F \cdot \cos \left( {\omega t - \Phi _E - \Phi _F } \right)} \right) \cdot \left( {D_0 + D \cdot \cos \left( {\omega t - \Phi _D } \right)} \right)\operatorname{d} t} $$
(A1)
$$ S_{avg} = \frac{1} {T}\left[ {\int\limits_0^T {F_0 \cdot D_0 dt} + \frac{1} {2}\int\limits_0^T {F \cdot D \cdot \cos \left( {\Delta \Phi _{DE} - \Phi _F } \right)dt} \frac{1} {2}\int\limits_0^T {F \cdot D \cdot \cos \left( {2\omega t - \Delta \Phi _{DE} - \Phi _F } \right)dt} + \int\limits_0^T {F_0 \cdot D \cdot \cos \left( {\omega t - \Phi _D } \right)dt} + \int\limits_0^T {D_0 \cdot F \cdot \cos \left( {\omega t - \Phi _E - \Phi _F } \right)dt} } \right] $$
(A2)

When T is large compared with 1 / ω, as in our case, the last three terms in Eq. A2 vanish due to averaging. Therefore,

$$ S_{avg} = F_0 \cdot D_0 + \frac{{F \cdot D}} {2} \cdot \cos \left( {\Delta \Phi _{DE} - \Phi _F } \right) = S_0 \left( {1 + \frac{M} {2} \cdot \cos \left( {\Delta \Phi _{DE} - \Phi _F } \right)} \right) $$
(A3)

In the case of the spinning disk confocal FLIM, the fluorescence signal emitted is switching between the bright period and the dark period and can be written as in Eq. A4

$$F\left( t \right) = \left\{ {\matrix{ {F_0 + F \cdot \cos \left( {\omega t - \Phi _E - \Phi _F } \right)when} & {n \cdot T_D \le t \le n \cdot T_D + T_B ;{\rm{ }}n = 0,1, \ldots ,T/\left( {T_D + T_B } \right)} \cr 0 & {otherwise} \cr } } \right.$$
(A4)

By putting Eq. A4 back into Eq. A1 and carrying out the calculation proves that this switching behavior reduces the total signal collected by the image intensifier but does not affect the final form of the homodyne signal, i.e. Eq. A3 above is still valid.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buranachai, C., Kamiyama, D., Chiba, A. et al. Rapid Frequency-Domain FLIM Spinning Disk Confocal Microscope: Lifetime Resolution, Image Improvement and Wavelet Analysis. J Fluoresc 18, 929–942 (2008). https://doi.org/10.1007/s10895-008-0332-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0332-3

Keywords

  • FLIM
  • FLI
  • Lifetime imaging
  • Spinning Disk
  • Microscope
  • Polar plot
  • Wavelet
  • Morphology
  • Background subtraction
  • Denoising