Skip to main content
Log in

Anion Sensing with Luminescent Quantum Dots – A Modular Approach Based on the Photoinduced Electron Transfer (PET) Mechanism

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A CdSe–ZnS quantum dot (QD) has been surface functionalised with 1-(2-mercapto-ethyl)-3-phenyl-thiourea in the fluorophore–spacer–receptor format typical of Photoinduced Electron Transfer (PET) based organic dye sensors. The resulting QD conjugate was tested for selectivity toward the tetrabutylammonium salts of fluoride, chloride, bromide, hydrogen sulfate and acetate. Addition of fluoride, chloride and acetate ions resulted in an approximate 90% quenching of the original fluorescence intensity, while bromide and hydrogen sulfate had almost no effect. The observed quench was attributed to an increase in the reduction potential of the receptor upon anion binding resulting in an increase in PET from the excited QD to the receptor and a concomitant reduction in fluorescence intensity. The selectivity and sensitivity were comparable to an analagous organic dye based sensor where a similar receptor was bound to an anthracene fluorophore. Thus a modular approach is evident where a receptor used in an organic dye based sensor can be adapted and successfully used with QD’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parak WJ, Pellegrino T, Plank C (2005) Labeling of cells with quantum dots. Nanotechnology 16:R9

    Article  CAS  Google Scholar 

  2. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Wu AM, Gambir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538

    Article  PubMed  CAS  Google Scholar 

  3. Giepmans BNG, Adams SR, Ellisman MH, Tsein RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217

    Article  PubMed  CAS  Google Scholar 

  4. Chen CY, Cheng CT, Lai CW, Wu PW, Wu KC, Chou PT, Chou YH, Chiu HT (2006) Potassium ion recognition by 15-crown-5 functionalized CdSe/ZnS quantum dots in H2O. Chem Commun 263–265

  5. Tomasulo M, Yildiz I, Raymo FM (2006) pH-sensitive quantum dots. J Phys Chem, B 110:3853

    Article  CAS  Google Scholar 

  6. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Matters 2:630

    Article  CAS  Google Scholar 

  7. Goldman ER, Medintz IL, Whitely JL, Hayhurst A, Clapp AR, Uyeda HT, Deschamps JR, Lassman ME, Mattoussi H (2005) A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. J Am Chem Soc 127:6744

    Article  PubMed  CAS  Google Scholar 

  8. Gattas-Asfura KM, Leblanc RM (2003) Peptide-coated CdS quantum dots for the optical detection of copper(II) and silver(I). Chem Commun 21:2684–2685

    Article  Google Scholar 

  9. Cheng Y, Gattas-Asfura K, Konka V, Leblanc RM (2002) A dansylated peptide for the selective detection of copper ions. Chem Commun 20:2350–2351

    Google Scholar 

  10. Xie HY, Liang JG, Zhang ZL, Liu Y, He ZK, Pan DW (2004) Luminescent CdSe–ZnS quantum dots as selective Cu2+ probe. Spectrochim Acta, A 60:2527

    Article  Google Scholar 

  11. Lai H, Yu Y, Zhong P, Wu J (2006) Development of novel quantum dots as fluorescent sensors for application in highly sensitive spectrofluorimetric determination of Cu2+. Anal Lett 39:1201

    Article  CAS  Google Scholar 

  12. Bo C, Ping Z (2005) A new determining method of copper(III) ions at ng per ml levels based on quenching of the water-soluble nanocrystals fluorescence. Anal Bioanal Chem 381:986

    Article  PubMed  CAS  Google Scholar 

  13. Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132

    Article  PubMed  CAS  Google Scholar 

  14. Sandros MG, Shete V, Benson DE (2006) Selective, reversible, reagentless maltose biosensing with core-shell semiconducting nanoparticles. Analyst 131:229

    Article  PubMed  CAS  Google Scholar 

  15. Sandros MG, Gao D, Benson DE (2005) A modular nanoparticle-based system for reagentless small molecule biosensing. J Am Chem Soc 127:12198

    Article  PubMed  CAS  Google Scholar 

  16. Cordes DB, Gamsey S, Singaram B (2006) Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution. Angew Chem, Int Ed 45:3829

    Article  CAS  Google Scholar 

  17. Tomasulo M, Yildiz I, Kaanumalle SL, Raymo FM (2006) pH-sensitive ligand for luminescent quantum dots. Langmuir 22:10284

    Article  PubMed  CAS  Google Scholar 

  18. Tsien RY (1992) Intracellular signal transduction in 4 dimensions – from molecular design to physiology. Am J Physiol 263:C723

    PubMed  CAS  Google Scholar 

  19. Bissell RA, de Silva AP, Gunaratne HQN, Lynch PLM, Maguire GEM, McCoy CP, Sandanayake KRAS (1993) Fluorescent PET (phoroinduced electron transfer) sensors. Top Curr Chem 168:223

    CAS  Google Scholar 

  20. Czarnik AW (1994) Chemical communication in water using fluorescent chemosensors. Acc Chem Res 27:302

    Article  CAS  Google Scholar 

  21. Fabbrizzi L, Poggi A (1995) Sensors and switches from supramolecular chemistry. Chem Soc Rev 24:197

    Article  CAS  Google Scholar 

  22. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JTR, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515

    Article  PubMed  Google Scholar 

  23. Fabbrizzi L, Licchelli M, Pallavicini P (1999) Transition metals as switches. Acc Chem Res 32:846

    Article  CAS  Google Scholar 

  24. Fabbrizzi L (2000) The design of luminescent sensors for anions and ionisable analytes. Coord Chem Rev 205:1

    Article  CAS  Google Scholar 

  25. de Silva AP, McClean GD, Moody TS, Weir SM (2003) Handbook of photochemistry and photobiology. American Scientific, Stevenson Ranch, CA, pp 217

    Google Scholar 

  26. Callan JF, de Silva AP, Magri DC (2005) Luminescent sensors and switches in the early 21st century. Tetrahedron 61:8551

    Article  CAS  Google Scholar 

  27. Gunnlaugsson T, Davis AP, Hussey GM, Tierney J, Glynn M (2004) Design, synthesis and photophysical studies of simple fluorescent anion sensors using charge neutral thiourea receptors. Org Biomol Chem 2:1856

    Article  PubMed  CAS  Google Scholar 

  28. See http://www.evidenttech.com/nanomaterials/evidots/quantum-dot-research-materials.php

  29. Magri DC, Callan JF, de Silva AP, Fox DB, McClenaghan ND, Sandanayake KRAS (2005) The anthracen-9-ylmethoxy unit: an underperforming motif within the fluorescent PET (Photoinduced Electron Transfer) sensing framework). J Fluoresc 15:769

    Article  PubMed  CAS  Google Scholar 

  30. Gunnlaugsson T, Davis AP, O’Brien JE, Glynn M (2005) Synthesis and photophysical evaluation of charge neutral thiourea or urea based PET sensors for bis-carboxylates and pyrophosphate. Org Biomol Chem 3:48

    Article  PubMed  CAS  Google Scholar 

  31. Martinez-Manez R, Sancenon F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103:4419

    Article  PubMed  CAS  Google Scholar 

  32. de Silva AP, Gunaratne HQN (1990) Fluorescent PET (Photoinduced Electron Transfer) sensors selective for submicromolar calcium with quantitatively predictable spectral and ion-binding properties. J Chem Soc, Chem Commun 186:14

    Google Scholar 

  33. de Silva AP, Gunaratne HQN, Lynch PLM (1995) Luminescence and charge transfer.4. On-Off fluorescent PET (Photoinduced Electron Transfer) sensors with pyridine receptors-1,3-Diaryl-5-pyridyl-4,5-dihyropyrazoles. J Chem Soc Perkin Trans 2:685

    Google Scholar 

  34. Balzani V, Venturi M, Credi A (2003) Molecular devices and machines. Wiley-VCH, Weinheim, Germany

    Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge financial assistance from RGU and the Leverhulme Trust UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Callan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Callan, J.F., Mulrooney, R.C., Kamila, S. et al. Anion Sensing with Luminescent Quantum Dots – A Modular Approach Based on the Photoinduced Electron Transfer (PET) Mechanism. J Fluoresc 18, 527–532 (2008). https://doi.org/10.1007/s10895-007-0295-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0295-9

Keywords

Navigation