Journal of Fluorescence

, Volume 17, Issue 6, pp 811–816 | Cite as

Plasmonic Enhancement of Single-Molecule Fluorescence Near a Silver Nanoparticle

Original Paper

Abstract

In this short paper, we reported the enhanced fluorescence from a single fluorophore bound to a 50nm silver nanoparticle. We found that on average the Cy5 molecules bound to metal nanoparticles are approximately 15-fold brighter than that of free dyes, and that single molecule lifetimes are shorter as compared to free fluorophores. The increased emission rate is primarily the result of local plasmon enhancement. These results demonstrate that the use of fluorophore-metal interactions can increase the brightness and photostability of fluorophores for single molecule detection.

Keywords

Single-molecule fluorescence Metal-enhanced fluorescence Silver nanoparticle Lifetime Plasmonic-controlled fluorescence DNA Radiative decay engineering 

References

  1. 1.
    Peterman EJG, Brasselet S, Moerner WE (1999) The fluorescence dynamics of single molecules of green fluorescent protein. J Phy Chem A 103:10553–10560CrossRefGoogle Scholar
  2. 2.
    Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283:1676–1683PubMedCrossRefGoogle Scholar
  3. 3.
    Garcia-Parajo MF, Veerman J, Bouwhuis R, Vallee R, van Hulst NF (2001) Optical probing of single fluorescent molecules and proteins. Chem Phys Che 2:347–360Google Scholar
  4. 4.
    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanaocrystas as fluorescent biological labels. Science 281:2013–2016PubMedCrossRefGoogle Scholar
  5. 5.
    Malicka J, Gryczynski I, Fang J, Kusba J, Lakowicz JR (2003) Fluroescence spectral properties of cyanine dye-labeled DNA oliogmers on surfaces coated with silver particles anal. Biochem 317:136–146Google Scholar
  6. 6.
    Malicka J, Gryczynski I, Fang J, Kusba J, Lakowciz JR (2002) Photostability of Cy3 and Cy5-labeled DNA in the presence of metallic silver particles. J Fluoresc 12:439–447CrossRefGoogle Scholar
  7. 7.
    Lakowicz JR, Shen Y, D’Auria S, Malicka J, Fang J, Gryczynski Z, Gryczynski I (2002) Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301:111–116PubMedCrossRefGoogle Scholar
  8. 8.
    Xie XS, Trautman JK (1998) Optical studies of single molecules at room temperature. Annu Rev Phys Chem 49:441–480PubMedCrossRefGoogle Scholar
  9. 9.
    Thomas M, Greffet J-J, Carminati R, Arias-Gonzalez JR (2004) Single-molecule spontaneous emission close to absorbing nanostructures. Appl Phys Lett 85:3863–3865CrossRefGoogle Scholar
  10. 10.
    Chen S, Wang Z, Ballato J, Foulger S, Carroll D (2003) Monopod, bipod, tripod, and tetrapod gold nanocrystals. J Am Chem Soc 125:16186–16187PubMedCrossRefGoogle Scholar
  11. 11.
    Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110:3990–3994PubMedCrossRefGoogle Scholar
  12. 12.
    Feldheim D, Foss C (2002) Metal nanoparticles: synthesis, characterization and applications. Marcel Dekker, New YorkGoogle Scholar
  13. 13.
    Zhang J, Fu Y, Lakowicz JR (2007) Enhanced Förster Resonance Energy Transfer (FRET) on a single metal particle. J Phys Chem C 111:50–56CrossRefGoogle Scholar
  14. 14.
    Weston KD, Carson PJ, Metiu H, Buratto SK (1998) Room-temperature fluorescence characteristics of single dye molecules adsorbed on a glass surface. J Chem Phys 109(17):7474CrossRefGoogle Scholar
  15. 15.
    Kramer A, Trabesinger W, Hecht B, Wild UP (2002) Optical near-field enhancement at a metal tip probed by a single fluorophores. Appl Phys Lett 80(9):1652CrossRefGoogle Scholar
  16. 16.
    Kühn S, Håkanson U, Rogobete L, Sandoghdar V (2006) Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 97:017402PubMedCrossRefGoogle Scholar
  17. 17.
    Sokolov K, Chumanov G, Cotton TM (1998) Enhancement of molecular fluorescence near the surface of colloidal metal films anal. Chem 70:3898–3905Google Scholar
  18. 18.
    Enderlein J (1999) Single-molecule fluorescence near a metal layer. Chem Phys 24:71–79Google Scholar
  19. 19.
    Enderlein J (2000) A theoretical investigation of single–molecule fluorescence detection on thin metallic layers. Biophys J 78:2151–2158PubMedCrossRefGoogle Scholar
  20. 20.
    Bharadwaj P, Anger P, Novotny L (2007) Nanoplasmonic enhancement of single-molecule fluorescence. Nanotechnology 18:044017CrossRefGoogle Scholar
  21. 21.
    Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96:11302CrossRefGoogle Scholar
  22. 22.
    Lakowicz JR, Malika J, Gryczynski I, Gryczynski Z, Geddes C (2003) Radiative decay engineering: the role of photonic mode density in biotechnology. J Phys D: Appl Phys 36:R240–R249CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Center for Fluorescence SpectroscopyUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations