Skip to main content
Log in

The Interaction between Polycationic Poly-Lysine Dendrimers and Charged and Neutral Fluorescent Probes

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The interactions between polycationic poly-lysine dendrimers and hydrophobic fluorescent probes (anionic ANS and neutral Prodan) were studied. R121 and R131 dendrimers were not able to interact with anionic and neutral hydrophobic groups. R124 was able to interact with neutral and anionic hydrophobic fluorescent probes, however mainly through hydrophobic forces. Dendrimers R155 and R169 showed the maximal effects. The strongest interactions observed for R169 can be explained by intramolecular folding (stacking) of its two L-proline residues. Using double fluorescence titration technique for ANS probe allowed to receive such constant of binding and the number of binding centers: for R121, 1.8·103 (mol/l)−1 and 1.07; for R124, 12.1·103 (mol/l)−1 and 0.48; for R131, 4.7·103 (mol/l)−1 and 0.48; for R155, 9.2·103 (mol/l)−1 and 1.36; for R169, 39.6·103 (mol/l)−1 and 0.97. Thus, neutral and anionic hydrophobic probes can be used for the fast preliminary screening of binding properties of newly synthesized polycationic dendrimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tomalia DA, Baker H, Ewald JR, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) Polym J 17:117–132

    Article  CAS  Google Scholar 

  2. Newkome GR, Yao ZQ, Baker GR, Gupta VK (1985) J Org Chem 50:2003–2006

    Article  CAS  Google Scholar 

  3. Fisher M, Vogtle F (1999) Angew Chem Int Ed 38:884–905

    Article  Google Scholar 

  4. Cloninger MJ (2002) Current Opinion Chem Biol 6:742–748

    Article  CAS  Google Scholar 

  5. Tam JP, Yang JL, Lu Y-A (2002) Eur J Biochem 269:923–932

    Article  PubMed  CAS  Google Scholar 

  6. Okuda T, Sugiyama A, Niidama T, Aoyagi H. (2004) Biomaterials 25:537–544

    Article  PubMed  CAS  Google Scholar 

  7. Bhadra D, Bhadra S, Jain NK (2004) Proceedings of the 2004 International Conference on MEMS, NANO and SMART Systems

  8. Bourne N, Stanberry LR, Kern ER, Holan G, Matthews B, Bernstein DI (2000) Antimicrob Agents Chemother 44:2471–2474

    Article  PubMed  CAS  Google Scholar 

  9. Klajnert B, Janiszewska J, Urbanczyk-Lipkowska Z, Bryszewska M, Shcharbin D, Labieniec M (2006) Int J Pharm 309:208–217

    Article  PubMed  CAS  Google Scholar 

  10. Jones NJ, Osborn MJ (1977) J Biol Chem 252:7398–7404

    PubMed  CAS  Google Scholar 

  11. Chen CZ, Cooper SL (2002) Biomaterials 23:3359–3368

    Article  PubMed  CAS  Google Scholar 

  12. Janiszewska J, Switon J, Lipkowski AW, Urbanczyk-Lipkowska Z (2003) Bioorg Med Chem Lett 13:3711–3713

    Article  PubMed  CAS  Google Scholar 

  13. Tam JP, Lu Y-A, Yang J-L (2002) Eur J Biochem 269:923–932

    Article  PubMed  CAS  Google Scholar 

  14. Matulis D, Baumann Ch, Bloomfield V, Lovrien R (1999) Biopolymers 49:451–458

    Article  PubMed  CAS  Google Scholar 

  15. Slavik J (1982) Biochim Biophys Acta 694:1–25

    PubMed  CAS  Google Scholar 

  16. Scatchard G (1949) Ann NY Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  17. Lakowicz JR (1999) Principles of Fluorescence Spectroscopy. 2nd ed., Kluwer Acadmic Publisher, Dordrecht

    Google Scholar 

  18. Shcharbin D, Klajnert B, Mazhul V, Bryszewska M (2003) J Fluoresc 13:519–524

    Article  CAS  Google Scholar 

  19. Shcharbin D, Klajnert B, Mazhul V, Bryszewska M (2005) J Fluoresc 15:21–29

    Article  PubMed  CAS  Google Scholar 

  20. Prodan. http://probes.invitrogen.com/handbook/sections/1305.html

  21. Kusube M, Matsuki H, Kaneshina Sh (2005) Colloids and Surf B 42:79–88

    Article  CAS  Google Scholar 

  22. Sengupta B, Guharay J, Sengupta PK (2000) Spectrochimica Acta Part A 56:1433–1441

    Article  Google Scholar 

  23. Hutterer R, Schneider FW, vSprinz H, Hof M (1996) Biophys Chem 61:151–160

    Article  PubMed  CAS  Google Scholar 

  24. Cramb DT, Beck SC (2000) J Photochem Photobiol A 134:87–95

    Article  CAS  Google Scholar 

  25. Bodanszky M, Bodanszky A (1984) The Practice of Peptide Synthesis. Springer-Verlag, Berlin

    Google Scholar 

  26. Stryer L (1965) J Mol Biol 13:482–495

    Article  PubMed  CAS  Google Scholar 

  27. Radda GK (1971) Curr Top Bioenerg 4:81–123

    CAS  Google Scholar 

  28. Schoenbrunn E, Eschenburg S, Luger K, Kabsch W, Amrhein N (2000) PNAS 97:6345–6349

    Article  Google Scholar 

  29. Schobert B, Tschesche H (1978) Biochim Biophys Acta 541:270–277

    PubMed  CAS  Google Scholar 

  30. Sankararamakrishnan R, Vishveshwara S (1990) Biopolymers 30: 287–298

    Article  PubMed  Google Scholar 

  31. Che Y, Marshall GR (2006) Biopolymers 81:392–406

    Article  PubMed  CAS  Google Scholar 

  32. Galzitskaya O, Caflisch A (1999) J Mol Graph Model 17:19–27

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Dzmitry Shcharbin is a beneficiary of a Marie Curie International Incoming Fellowship within the 6th EU Framework Programme (grant 510018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Bryszewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jokiel, M., Shcharbin, D., Janiszewska, J. et al. The Interaction between Polycationic Poly-Lysine Dendrimers and Charged and Neutral Fluorescent Probes. J Fluoresc 17, 73–79 (2007). https://doi.org/10.1007/s10895-006-0141-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-006-0141-5

Keywords

Navigation