Skip to main content
Log in

A Versatile Method for Determining the Molar Ligand-Membrane Partition Coefficient

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel method for the quantitative assessment of the membrane partitioning of a ligand from the aqueous phase is described, demonstrated here with the thoroughly studied antipsychotic chlorpromazine (CPZ). More specifically, collisional quenching of the fluorescence of a pyrene labeled fluorescent lipid analog 1-palmitoyl-2[10-(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC) by CPZ was utilized, using 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine and -serine (POPC and POPS) liposomes as model membranes. The molar partition coefficient is obtained from two series of titrations, one with constant [phospholipid] and increasing [drug] and the other with constant [drug] and varying total [phospholipid], the latter further comprising of large unilamellar vesicles (LUVs) of POPC/POPS/PPDPC at a constant concentration of 10 μM and indicated concentrations of POPC/POPS LUVs. Notably, the approach described is generic and can be employed in screening for the membrane partitioning of compounds, providing that a suitable fluorescence parameter can be incorporated into one population of liposomes utilized as model membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kansy M, Senner F, Gubernator K (1998) Physicochemical high throughput screening: Parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem 41(7):1007–1010

    Article  PubMed  CAS  Google Scholar 

  2. Schreier S, Malheiros SV, de Paula E (2000) Surface active drugs: Self-association and interaction with membranes and surfactants. physicochemical and biological aspects. Biochim Biophys Acta 1508(1–2):210–234

    PubMed  CAS  Google Scholar 

  3. Santos NC, Prieto M, Castanho MARB (2003) Quantifying molecular partition into model systems of biomembranes: An emphasis on optical spectroscopic methods. Biochim Biophys Acta, Biomem 1612(2):123–135

    Article  CAS  Google Scholar 

  4. Suomalainen P, Johans C, Söderlund T, Kinnunen PK (2004) Surface activity profiling of drugs applied to the prediction of blood-brain barrier permeability. J Med Chem 47(7):1783–1788

    Article  PubMed  CAS  Google Scholar 

  5. Mycek MJ (1997) Pharmacology 2nd ed. Lippincott-Raven, Philadelphia, PA

    Google Scholar 

  6. Seeman P (1972) The membrane actions of anesthetics and tranquilizers. Pharmacol Rev 24(4):583–655

    PubMed  CAS  Google Scholar 

  7. Zhao H, Mattila JP, Holopainen JM, Kinnunen PK (2001) Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin. Biophys J 81(5):2979–2991

    Article  PubMed  CAS  Google Scholar 

  8. Jutila A, Rytömaa M, Kinnunen PK (1998) Detachment of cytochrome c by cationic drugs from membranes containing acidic phospholipids: Comparison of lidocaine, propranolol, and gentamycin. Mol Pharmacol 54(4):722–732

    PubMed  CAS  Google Scholar 

  9. Söderlund T, Lehtonen JY, Kinnunen PK (1999) Interactions of cyclosporin A with phospholipid membranes: Effect of cholesterol. Mol Pharmacol 55(1):32–38

    PubMed  CAS  Google Scholar 

  10. Antkowiak B (2001) How do general anaesthetics work? Naturwissenschaften 88(5):201–213

    Article  PubMed  CAS  Google Scholar 

  11. Conrad MJ, Singer SJ (1981) The solubility of amphipathic molecules in biological membranes and lipid bilayers and its implications for membrane structure. Biochemistry 20(4):808–818

    Article  PubMed  CAS  Google Scholar 

  12. Luxnat M, Muller HJ, Galla HJ (1984) Membrane solubility of chlorpromazine. hygroscopic desorption and centrifugation methods yield comparable results. Biochem J 224(3):1023–1026

    PubMed  CAS  Google Scholar 

  13. Jutila A, Söderlund T, Pakkanen AL, Huttunen M, Kinnunen PK (2001) Comparison of the effects of clozapine, chlorpromazine, and haloperidol on membrane lateral heterogeneity. Chem Phys Lipids 112(2):151–163

    Article  PubMed  CAS  Google Scholar 

  14. Bretscher (1972) Asymmetrical lipid bilayer structure for biological membranes. Nature: New biology 236(61):11

    CAS  Google Scholar 

  15. Dolis D, Moreau C, Zachowski A, Devaux PF (1997) Aminophospholipid translocase and proteins involved in transmembrane phospholipid traffic. Biophys Chem 68(1–3):221–231

    Article  PubMed  CAS  Google Scholar 

  16. Devaux PF (1991) Static and dynamic lipid asymmetry in cell membranes. Biochemistry 30(5):1163–1173

    Article  PubMed  CAS  Google Scholar 

  17. Nerdal W, Gundersen SA, Thorsen V, Hoiland H, Holmsen H (2000) Chlorpromazine interaction with glycerophospholipid liposomes studied by magic angle spinning solid state (13)C-NMR and differential scanning calorimetry. Biochim Biophys Acta 1464(1):165–175

    Article  PubMed  CAS  Google Scholar 

  18. Underhaug Gjerde A, Holmsen H, Nerdal W (2004) Chlorpromazine interaction with phosphatidylserines: A (13)C and (31)P solid-state NMR study. Biochim Biophys Acta 1682(1–3):28–37

    PubMed  CAS  Google Scholar 

  19. Varnier Agasoster A, Holmsen H (2001) Chlorpromazine associates with phosphatidylserines to cause an increase in the lipid’s own interfacial molecular area–role of the fatty acyl composition. Biophys Chem 91(1):37–47

    Article  PubMed  CAS  Google Scholar 

  20. Luxnat M, Galla HJ (1986) Partition of chlorpromazine into lipid bilayer membranes: The effect of membrane structure and composition. Biochim Biophys Acta 856(2):274–282

    Article  PubMed  CAS  Google Scholar 

  21. Takegami S, Kitamura K, Kitade T, et al (2005) Effects of phosphatidylserine and phosphatidylethanolamine content on partitioning of triflupromazine and chlorpromazine between phosphatidylcholine-aminophospholipid bilayer vesicles and water studied by second-derivative spectrophotometry. Chem Pharm Bull (Tokyo) 53(1):147–150

    Article  CAS  Google Scholar 

  22. Tehrani S, Brandstater N, Saito YD, Dea P (2001) Studies on the size and stability of chlorpromazine hydrochloride nanostructures in aqueous solution. Biophys Chem 94(1–2):87–96

    Article  PubMed  CAS  Google Scholar 

  23. Chen JY, Brunauer LS, Chu FC, Helsel CM, Gedde MM, Huestis WH (2003) Selective amphipathic nature of chlorpromazine binding to plasma membrane bilayers. Biochim Biophys Acta 1616(1):95–105

    Article  PubMed  CAS  Google Scholar 

  24. MacDonald RC, MacDonald RI, Menco BP, Takeshita K, Subbarao NK, Hu LR (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta 1061(2):297–303

    Article  PubMed  CAS  Google Scholar 

  25. Kucerka N, Liu Y, Chu N, Petrache HI, Tristram-Nagle S, Nagle JF (2005) Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys J 88(4):2626–2637

    Article  PubMed  CAS  Google Scholar 

  26. Metso AJ, Jutila A, Mattila J, Holopainen JM, Kinnunen PKJ (2003) Nature of the main transition of dipalmitoylphosphocholine bilayers inferred from fluorescence spectroscopy. J Phys Chem B 107(5):1251–1257

    Article  CAS  Google Scholar 

  27. Lakowicz JR (1999) Principles of Fluorescence Spectroscopy 2nd ed. Kluwer Academic/Plenum, New York

    Google Scholar 

  28. Rytömaa M, Kinnunen PK (1994) Evidence for two distinct acidic phospholipid-binding sites in cytochrome c. J Biol Chem 269(3):1770–1774

    PubMed  CAS  Google Scholar 

  29. Mustonen P, Kinnunen PK (1993) On the reversal by deoxyribonucleic acid of the binding of adriamycin to cardiolipin-containing liposomes. J Biol Chem 268(2):1074–1080

    PubMed  CAS  Google Scholar 

  30. Koiv A, Palvimo J, Kinnunen PK (1995) Evidence for ternary complex formation by histone H1, DNA, and liposomes. Biochemistry 34(25):8018–8027

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank DDS Antti Pakkanen for estimating the molar volume of CPZ. The technical assistance of Kristiina Söderholm and Kaija Niva is highly appreciated. HBBG is supported by the Finnish Academy and Sigrid Juselius Foundation. JMA is supported by the Research Foundation of Orion Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha-Matti Alakoskela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parry, M.J., Jutila, A., Kinnunen, P.K.J. et al. A Versatile Method for Determining the Molar Ligand-Membrane Partition Coefficient. J Fluoresc 17, 97–103 (2007). https://doi.org/10.1007/s10895-006-0138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-006-0138-0

Keywords

Navigation