Skip to main content
Log in

A Self-Organized Ensemble of Fluorescent 3-Hydroxyflavone-Al (III) Complex as Sensor for Fluoride and Acetate Ions

  • Brief Communication
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Aluminum chloride addition results in a self-organized TURN-ON fluorescence of 3-hydroxyflavone (3HF) by a complexation reaction in MeOH and subsequent ligand exchange reaction with fluoride or acetate ions causes a fluorescence TURN-OFF of this complex, delivering a quantitative estimation route for fluoride and acetate ions. The ternary complex of 3HF with Al (III), a hard acid provides for a sensitive signalling system for fluoride ion, a hard base in the concentration range from 6 μM to 50 mM by a concerted co-ordination of fluoride ion involving an intermediate mechanistic pathway, while the complex is sensitive to acetate addition between 0–68 μM. The ligand exchange reaction of Al (3HF)2 complex by fluoride or acetate ion, without interference from other common anions, has been investigated by UV-visible and fluorescence spetroscopies. The structure of the in-situ intermediate isolated at higher Al (3HF)2 complex and acetate concentrations was inferred from the FT-IR spectrum and ESI-MS of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

References

  1. Beer PD, Gale PA (2001) Anion recognition and sensing: the state of the art and future perspectives. Angew Chem Int Ed 40(3):486–516

    Article  CAS  Google Scholar 

  2. Gilles DG, Loher RC (1994) Waste generation and minimization in semiconductor industry. J Environ Eng 120:72–86

    Article  CAS  Google Scholar 

  3. Takahashi Y, Tanaka DAP, Matsunaga H, Suzuki TM (2002) Fluorometric detection of fluoride ion by ligand exchange reaction with 3-hydroxyflavone coordinated to a zirconium(IV)–EDTA complex. J Chem Soc Perkin Trans 2:759–762

    Google Scholar 

  4. Badugu R, Lakowicz JR, Geddes CD (2005) A wavelength-ratiometric fluoride-sensitive probe based on the quinolinum nucleus and boronic acid moiety. Sens Actuators, B 104:103–110

    Article  Google Scholar 

  5. Miyaji H, Sessler JL (2001) Off-the-shelf colorimetric anion sensors. Angew Chem Int Ed 40(1):154–157

    Article  CAS  Google Scholar 

  6. Ion AC, Ion I, Antonisse MMG, Snelink-Rüuel BHM, et al (2001) Characteristics of fluoride-selective electrode with uranyl salophen receptors in aqueous solutions. Rus J Gen Chem 71(2):159–161

    Article  CAS  Google Scholar 

  7. Xu XR, Li HB, Gu JD, Paeng KJ (2004) Determination of fluoride in water by reverse-phase high-performance liquid chromatography. Chromatographia 59:745–747

    Article  CAS  Google Scholar 

  8. Yamaguchi S, Akiyama S, Tamao K (2001) Colorimetric fluoride ion sensing by boron-containing π-electron systems. J Am Chem Soc 123 (46):11372–11375

    Article  PubMed  Google Scholar 

  9. Xu S, Chen K, He Tian (2005) A colorimetric and fluorescent chemodosimeter: fluoride ion sensing by an axial-substituted subphthalocyanine. J Mater Chem 15:2676–2680

    Article  CAS  Google Scholar 

  10. Ferris MM, Leonard MA (1991) Solvent extraction of trace amounts of fluoride prior to, mainly, spectrometry—a review: recent advances in the Alizarin Fluorine Blue approach. Analyst 116(4):379–385

    Article  CAS  Google Scholar 

  11. Qing ZC, Long CJ, Hong Z, Qin WY, et al (2005) A colorimetric method for fluoride determination in aqueous samples based on the hydroxyl deprotection reaction of a cyanine dye. Anal Chim Acta 539 (1–2):311–316

    Google Scholar 

  12. Suksai C, Tuntulani T (2003) Chromogenic anion sensors. Chem Soc Rev 32(4):192–202

    Article  PubMed  CAS  Google Scholar 

  13. Savage PB, Holmgren SK, Gellman SH (1994) Anion and ion pair complexation by a macrocyclic phosphine oxide disulfoxide. J Am Chem Soc 116(9):4069–4070

    Article  CAS  Google Scholar 

  14. Jose DA, Kumar DK, Ganguly B, Das A (2004) Efficient and simple colorimetric fluoride ion sensor based on receptors having urea and thiourea binding sites. Org Lett 6(20):3445–3448

    Article  PubMed  CAS  Google Scholar 

  15. Cho EJ, Ryu BJ, Lee YJ, Nam KC (2005) Visible colorimetric fluoride ion sensors. Org Lett 7(13):2607–2609

    Article  PubMed  CAS  Google Scholar 

  16. Ghosh T, Maiya BG (2004) Visual sensing of fluoride ions by dipyrrolyl derivatives bearing electron-withdrawing groups. J Chem Sci 116(1):17–20

    CAS  Google Scholar 

  17. Badugu R, Lakowicz JR, Geddes CD (2005) Anion sensing using quinolinium based boronic acid probes. Curr Anal Chem 1(2):157–170

    Article  CAS  Google Scholar 

  18. Melaimi M, Gabbaý FP (2005) A heteronuclear bidentate Lewis acid as a phosphorescent fluoride sensor. J Am Chem Soc 127(27):9680–9681

    Article  PubMed  CAS  Google Scholar 

  19. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  20. Martinez-Manez R, Sancenon F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103(11):4419–4476

    Article  PubMed  CAS  Google Scholar 

  21. Miyaji H, Collinson R, Prokes I, Tucker JHR (2003) A ditopic ferrocene receptor for anions and cations that functions as a chromogenic molecular switch. Chem Commun 64–65

  22. de Silva A P, McClean GD, Pagliari S (2003) Direct detection of ion pairs by fluorescence enhancement. Chem Commun 2010–2011

  23. Lehaire M L, Scopelliti R, Piotrowski H, Severin K (2002) Selective recognition of fluoride anion using a Li+- metallacrown complex. Angew Chem Int Ed 41:1419–1422

    Article  CAS  Google Scholar 

  24. Koskela SJM, Fyles TM, James TD (2005) A ditopic fluorescent sensor for potassium fluoride. Chem Commun 945–947

  25. Wiskur SL, Ait-Haddou H, Lavigne JJ, Anslyn EV (2001) Teaching old indicators new tricks. Acc Chem Res 34(12):963–972

    Article  PubMed  CAS  Google Scholar 

  26. Kubo Y, Kobayashi A, Ishida T, Misawaa Y, James TD (2005) Detection of anions using a fluorescent alizarin-phenylboronic acid ensemble. Chem Commun 2846–2848

  27. Kubo Y, Ishida T, Kobayashi A, Misawaa Y, James TD (2005) Fluorescent alizarin-phenylboronic acid ensembles: design of self-organized molecular sensors for metal ions and anions. J Mater Chem 2889–2895

  28. Cornard JP, Merlin JC (2002) Spectroscopic and structural study of complexes of quercetin with Al(III). J Inorg Biochem 92:19–27

    Article  PubMed  CAS  Google Scholar 

  29. Boudet AC, Cornard JP, Merlin JC (2000) Conformational and spectroscopic investigation of 3-hydroxyflavone-aluminum chelates. Spectrochim Acta, Part A. 56:829–839

    Article  CAS  Google Scholar 

  30. Engelmann MD, Hutcheson R, Cheng IF (2005) Stability of Ferric Complexes with 3-Hydroxyflavone (Flavonol), 5,7-Dihydroxyflavone (Chrysin), and 3’,4’-Dihydroxyflavone. J Agric Food Chem 53(8):2953–2960

    PubMed  CAS  Google Scholar 

  31. Dangleterre L, Cornard JP (2005) Interaction of lead (II) chloride with hydroxyflavones in methanol: a spectroscopic study. Polyhedron 24:1593–1598

    Article  CAS  Google Scholar 

  32. Cornard JP, Dangleterre L, Lapouge C (2006) DFT and TD-DFT investigation and spectroscopic characterization of the molecular and electronic structure of the Zn(II)–3-hydroxyflavone complex. Chem Phys Lett 419:304–308

    Article  CAS  Google Scholar 

  33. Cornard JP, Merlin JC (2001) Structural and spectroscopic investigation of 5-hydroxyflavone and its complex with aluminium. J Mol Struct 569:129–138

    Article  CAS  Google Scholar 

  34. Willard HH, Horton CA (1952) Fluorometric Determinations of Traces of Fluoride. Anal Chem 24:862–865

    Article  CAS  Google Scholar 

  35. Martin RB (1996) Ternary complexes of Al3+ and F with a third ligand. Coord Chem Rev 149:23–32

    Article  Google Scholar 

  36. Badr IHA, Meyerhoff ME (2005) Fluoride-selective optical sensor based on Aluminum (III)-octaethylporphyrin in thin polymeric film: further characterization & practical application. Anal Chem 77(20):6719–6728

    Article  PubMed  CAS  Google Scholar 

  37. Lee DH, Im JH, Lee JH, Hong JI (2002) A new fluoride chemosensor based on conformational restriction of a biaryl fluorophore. Tetrahedron Lett 43:9637–9640

    Article  CAS  Google Scholar 

  38. Zhang BG, Xu J, Zhao YG, Duan CY, Cao X, et al, (2006), Host-guest complexation of a fluorescent and electrochemical chemosensor for fluoride anion. Dalton Trans 10:1271–1276

    Article  PubMed  Google Scholar 

  39. Xu G, Tarr MA (2004) A novel fluoride sensor based on fluorescence enhancement. Chem Commun 1050–1051

  40. Yuchi A, Hiramatsu H, Ohara M, Ohata N (2003) Performance of Tris (2-methyl-8-quinolinolato) aluminum as fluorescent anionophore. Anal Sci 19:1177–1181

    Article  PubMed  CAS  Google Scholar 

  41. Chen QY, Chen CF (2004) A new fluorescent as well as chromogenic chemosensor for anions based on an anthracene carbamate derivative. Tetrahedron Lett 45:6493–6496

    Article  CAS  Google Scholar 

  42. Ibrahim M, Koglin E (2004) Vibrational spectroscopic study of acetate group. Acta Chim Slov 51:453–460

    CAS  Google Scholar 

  43. Chidambaram D, Halada GP (2001) Infrared microspectroscopic studies on the pitting of AA2024-T3 induced by acetone degreasing. Surf Interface Anal 31:1056–1059

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Chancellor, Bhagawan Sri Sathya Sai Baba, Sri Sathya Sai Institute of Higher Learning, for his constant inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chelli Janardhana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sathish, S., Narayan, G., Rao, N. et al. A Self-Organized Ensemble of Fluorescent 3-Hydroxyflavone-Al (III) Complex as Sensor for Fluoride and Acetate Ions. J Fluoresc 17, 1–5 (2007). https://doi.org/10.1007/s10895-006-0137-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-006-0137-1

Keywords

Navigation