Skip to main content
Log in

Quenchers Induce Wavelength Dependence on Protein Fluorescence Lifetimes

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We have analysed the picosecond resolved fluorescence emission decay of horseradish peroxidase A2 and of HEW lysozyme acquired with a streak camera. Analyses of the fluorescence decay data of both proteins revealed that the dynamics of the decay is dependent on the emission wavelength. Our data strongly indicates that resonance energy transfer occurring between aromatic residues and different protein fluorescence quencher groups, and the nature of the quencher groups, are the causes of the observed wavelength dependent mean lifetime distribution. Using the global analysis data to calculate the fluorescence mean lifetime at each wavelength revealed that for lysozyme, the mean fluorescence lifetime increased with observation wavelength, whereas the opposite was the case for peroxidase. Both proteins contain strong fluorescence quencher groups located in close spatial proximity to the protein’s aromatic residues. Lysozyme contains disulfide bridges as the main fluorescence quencher whereas peroxidase contains a heme group. Both for lysozyme and horseradish peroxidase there is a clear correlation between the observed fluorescence mean lifetime of the protein at a particular emission wavelength and the respective quencher’s extinction coefficient at the respective wavelength. Furthermore, our study also reports a comparison of the analyses of the fluorescence data done with three different methods. Analyses of the fluorescence decay at 10 different fluorescence emission wavelengths revealed significant differences in both fluorescence lifetimes and the pre-exponential factor distributions. Such values differed from the values recovered from the integrated decay curves and from global analyse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bright FV, Munson CA (2003) Time-resolved fluorescence spectroscopy for illuminating complex systems. Anal Chim Acta 500:71–104

    Article  CAS  Google Scholar 

  2. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  3. Lehrer SS (1971) Solute perturbation of protein fluorescence. The quenching of the tryptophan fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263

    Article  PubMed  CAS  Google Scholar 

  4. Lakowicz JR, Cherek H (1980) Nanosecond dipolar relaxation in proteins observed by wavelength-resolved lifetimes of tryptophan fluorescence. J Biol Chem 225:831–834

    Google Scholar 

  5. Lakowicz JR (2000) On spectral relaxation in proteins. Photochem Photobiol 72(4):421–437

    Article  PubMed  CAS  Google Scholar 

  6. Demchenko AP (2002) The red-edge effects: 30 years of exploration. Luminescence 17:19–42

    Article  PubMed  CAS  Google Scholar 

  7. Pan C-P, Barkley MD (2004) Conformational effects on tryptophan fluorescence in cyclic hexapeptides. Biophys J 86(6):3828–3835

    Article  PubMed  CAS  Google Scholar 

  8. Callis PR, Liu T (2004) Quantitative prediction of fluorescence quantum yield for tryptophan in proteins. J Phys Chem B 108:4248–4259

    Article  CAS  Google Scholar 

  9. Hochstrasser RM, Negus DK (1984) Picosecond fluorescence decay of tryptophan in myoglobulin. Proc Natl Acad Sci 81:4399–4403

    Article  PubMed  CAS  Google Scholar 

  10. Chen Y, Barkley MD (1998) Toward understanding tryptophan fluorescence in proteins. Biochemistry 37:9976–9982

    Article  PubMed  CAS  Google Scholar 

  11. Kamal JKA, Behere DV (2001) Steady-state and picosecond time-resolved fluorescence studies on native and apo seed coat soybean peroxidase. Biochem Biophys Res Commun 289:427–433

    Article  PubMed  CAS  Google Scholar 

  12. Neves-Petersen MT, Gryczynski Z, Lakowicz J, Fojan P, Pedersen S, Petersen E, Petersen SB (2002) High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue. Protein Sci 11:588–600

    Article  PubMed  CAS  Google Scholar 

  13. Carvalho ASL, Santos AM, Neves-Petersen MT, Petersen SB, Aires-Barros MR, Melo EP (2004) Conformational states of HRPA1 induced by thermal unfolding: Effect of low molecular weight solutes. Biopolymers 75:173–186

    Article  PubMed  CAS  Google Scholar 

  14. Prompers JJ, Hilbers CW, Pepermans HAM (1999) Tryptophan mediated photoreduction of disulphide bonds causes unusual fluorescence behaviour of Fusarium solani pisi cutinase. FEBS Lett 45(6):409–416

    Article  Google Scholar 

  15. Bent DV, Hayon E (1975) Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan. J Am Chem Soc 97(10):2612–2619

    Google Scholar 

  16. Tsentalovich YP, Snytnokiva OA, Sagdeev RZ (2004) Properties of excited states of aqueous tryptophan. J Photochem Photobiol A: Chem 162:371–379

    Article  CAS  Google Scholar 

  17. Neves-Petersen MT, Klitgaard S, Sundström V, Polívka T, Yartsev A, Pascher T, Petersen SB (2006) Photo-induced reaction dynamics in aromatic residues in proteins. Manuscript in preparation

  18. Speiser S (1992) Molecular electronic energy transfer in bichromophoric molecules in solution and in a supersonic jet expansion. Pure Appl Chem 64(10):1481–1487

    Article  CAS  Google Scholar 

  19. Selvin PR (2000) The renaissance of fluorescence energy transfer Nat Struct Biol 7(9):730–734

    Article  PubMed  CAS  Google Scholar 

  20. Scholes GD (2003) Long-range resonance energy transfer in molecular systems. Annu Rev Phys Chem 54:57–87

    Article  PubMed  CAS  Google Scholar 

  21. Davis LM, Parigger C (1992) Use of streak camera for time-resolved photon counting fluorimetry. Meas Sci Technol 3:85–90

    Article  CAS  Google Scholar 

  22. Optronis.com, 2005 http://www.optronis.com/content/view/14/41/

  23. Eaton DF (1990) Recommended methods for fluorescence decay analysis. Pure Appl Chem 62(8):1631–1648

    Article  CAS  Google Scholar 

  24. Sau AK, Chen C-A, Cowan JA, Mazumdar S, Mitra S (2001) Steady-state and time-resolved fluorescence studies in wild type and mutant Chromatium vinosum high potential iron proteins: Holo- and apo-forms. Biophys J 81:2320–2330

    Article  PubMed  CAS  Google Scholar 

  25. Engelborghs Y (2001) The analysis of time resolved protein fluorescence in multi-tryptophan proteins. Spectrochim Acta Part A 57:2255–2270

    Article  CAS  Google Scholar 

  26. Engelborghs Y (2003) Correlating protein structure and protein fluorescence. J Fluoresc 13(1):9–16

    Article  CAS  Google Scholar 

  27. Hearn CH, Turcu E, Joens JA (1990) The near U.V. absorption of dimethyl sulfide, diethyl sulfide and dimethyl disulfide at T=300 K. Atmos Env 24A(7):1939–1944

    CAS  Google Scholar 

  28. Smith AL (1996) Comparison of the ultraviolet absorption cross section of C60 buckminsterfullerene in the gas phase and in hexane solution. J Phys B: At Mol Opt Phys 29:4975–4980

    Article  CAS  Google Scholar 

  29. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucl Acids Res 28:235–242.

    Article  PubMed  CAS  Google Scholar 

  30. Neves-Petersen MT, Jonson PH, Petersen SB (1999) Amino acid neighbours and detailed conformational analysis of cysteines in proteins. Protein Eng 12(7):535–548

    Article  Google Scholar 

Download references

Acknowledgements

M.T.N.-P. acknowledges the support from Novi Invest and Licfond and from the Danish Research Agency, Novo Nordisk A/S, Novozymes A/S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Petersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klitgaard, S., Neves-Petersen, M.T. & Petersen, S.B. Quenchers Induce Wavelength Dependence on Protein Fluorescence Lifetimes. J Fluoresc 16, 595–609 (2006). https://doi.org/10.1007/s10895-006-0081-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-006-0081-0

Keywords

Navigation