Skip to main content

Advertisement

Log in

Study of the Interaction Between Apis mellifera Venom and Micro-Heterogeneous Systems

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

The bee venom, used in treatment of inflammatory and articular diseases, is a complex mixture of peptides and enzymes and the presence of tryptophan allows the investigation by fluorescence techniques. Steady state and time-resolved fluorescence spectroscopy were used to study the interaction between bee venom extracted from Apis mellifera and three micro heterogeneous systems: sodium dodecylsulphate (SDS) micelles, sodium dodecylsulphate-poly(ethylene oxide) (SDS-PEO) aggregates, and the polymeric micelles LUTROL® F127, formed by poly(ethylene oxide)-poly(propylene oxide)- poly(ethylene oxide). Fluorescence parameters in buffer solution were typical of peptides containing tryptophan exposed to the aqueous medium, and they gradually changed upon the addition of surfactant and polymeric micelles, demonstrating the interaction of the peptides with the micro heterogeneous systems. Quenching experiments were carried out using the N-alkylpyridinium ions (ethyl, hexyl, and dodecyl) as quenchers. In buffer solution the quenching has low efficiency and is independent of the alkyl chain length of the quencher. In the presence of the micro heterogeneous systems the extent of static and dynamic quenching enhanced, showing that both fluorophore and quenchers reside in the microvolume of the aggregates. The more hydrophobic quencher (dodecyl pyridinium ion) provides higher values for K SV and dynamic quenching constants, and SDS-PEO aggregates are most efficient to promote interaction between peptides and alkyl pyridinium ions. The results proved that bee venon interacts with drug delivery micelles of the copolymer LUTROL® F127.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Park HJ, Lee SH, Son DJ, Oh KW, Kim KH, Song HS, Kim GJ, Oh GT, Yoon DY, Hong JT (2004) Antiarthritic effect of bee venom. Arthr Rheum 50(11):3504–3515

    Article  CAS  Google Scholar 

  2. Raghuraman H, Chattopadhyay A (2004) Interaction of melittin with membrane cholesterol: A fluorescence approach. Biophys J 87:2419–2432

    Article  PubMed  CAS  Google Scholar 

  3. Raghuraman H, Chattopadhyay A (2005) Cholesterol inhibits the lytic activity of melittin in erythrocytes. Chem Phys Lipids 134:183–189

    Article  PubMed  CAS  Google Scholar 

  4. Lavignac N, Lazenby M, Franchini J, Ferruti P, Duncan R (2005) Synthesis and preliminary evaluation of poly(amidoamine)-melittin conjugates as endosomolytic polymers and/or potential anticancer therapeutics. Int J Pharm 300:102–112

    Article  PubMed  CAS  Google Scholar 

  5. Raghuraman H, Chattopadhyay A (2004) Effect of micellar charge on the conformation and dynamics of melittin. Eur Biophys J 33:611–622

    Article  PubMed  CAS  Google Scholar 

  6. Sen S, Sukul D, Dutta P, Bhattacharyya K (2002) Solvation dynamics in aqueous polymer solution and in polymer-surfactant aggregate. J Phys Chem B 106:3763–3769

    Article  CAS  Google Scholar 

  7. Tang Y, Liu SY, Armes SP, Billingham NC (2003) Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers. Biomacromolecules 4:1636–1645

    Article  PubMed  CAS  Google Scholar 

  8. Diaz X, Albuin E, Lissi E (2003) Quenching of BSA intrinsic fluorescence by alkylpyridinium cations. Its relationship to surfactant-protein association. J Photochem Photobiol A: Chem 155:157–162

    CAS  Google Scholar 

  9. Weiss-López BE, González JV, Gamboa C (1996) Solubilization of N-alkylpyridinium ions in anionic nematic lyomesophases. Langmuir 12:4324–4328

    Article  Google Scholar 

  10. Romani AP, Vena FCB, Nassar PM, Tedesco AC, Bonilha JBS (2001) The binding of short chain N-alkylpyridinium ions to sodium dodecylsulfate micelles. J Colloid Interface Sci 243:463–468

    Article  CAS  Google Scholar 

  11. Dai S, Tam KC (2001) Isothermal titration calorimetry studies of binding interactions between polyethylene glycol and ionic surfactants. J Phys Chem B 105:10759–10763

    Article  CAS  Google Scholar 

  12. Nassar PM, Nogueira LC, Bonilha JBS (1995) Photophysical probe studies of polymer-detergent interactions. J Braz Chem Soc 6(2):173–178

    CAS  Google Scholar 

  13. Dhara D, Shah DO (2001) Stability of sodium dodecyl sulfate micelles in the presence of a range of water-soluble polymers: A pressure-jump study. J Phys Chem B 105:7133–7138

    Article  CAS  Google Scholar 

  14. Van Domeselaar GH, Kwon GS, Andrew LC, Wishart DS (2003) Application of solid phase peptide síntesis to engineering PEO-peptide block copolymers for drug delivery. Coll Surf B: Bioint 30:323–334

    Article  CAS  Google Scholar 

  15. Alexandridis P, Alan Hatton T (1995) Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solution and at interfaces: Thermodynamics, structure, dynamics, and modeling. Coll Surf A: Physicochem Eng Aspects 96:1–46

    Article  CAS  Google Scholar 

  16. Ito AS, de L Castrucci AM, Hruby VJ, Hadley ME, Krajcarski DT, Szabo AG (1993) Structure activity correlations of melanotropic peptides in model lipids by tryptophan fluorescence studies. Biochemistry 32:12264–12272

    Article  PubMed  CAS  Google Scholar 

  17. Ito AS, Souza ES, Barbosa SR, Nakaie CR (2001) Fluorescence study of conformational properties of melanotropins labeled with aminobenzoic acid. Biophys J 81:1180–1189

    PubMed  CAS  Google Scholar 

  18. Hellings M, De Maeyer M, Verheyden S, Hao Q, Van Damme EJM, Peumans WJ, Engelborghs Y (2003) The dead-end elimination method, tryptophan rotamers, and fluorescence lifetimes. Biophys J 85:1894–1902

    PubMed  CAS  Google Scholar 

  19. Clayton AHA, Sawyer WH (1999) Tryptophan rotamer distributions in amphipathic peptides at a lipid surface. Biophys J 76:3235–3242

    Article  PubMed  CAS  Google Scholar 

  20. Pan C-P, Barkley MD (2004) Conformational effects on tryptophan fluorescence in cyclic hexapeptides. Biophys J 86:3828–2835

    Article  PubMed  CAS  Google Scholar 

  21. Goldman C, Pascutti PG, Piquini P, Ito AS (1995) On the contribution of electron transfer reaction to the quenching of tryptophan fluorescence. J Chem Phys 103:10614–10620

    Article  CAS  Google Scholar 

  22. Marquezin CA, Hirata IY, Juliano L, Ito AS (2003) Tryptophan as a fluorescent probe for acid-base equilibrium. Biopolymers 71:569–576

    Article  PubMed  CAS  Google Scholar 

  23. Fernandezm RM, Vieira RFF, Nakaye CR, Lamy MT, Ito AS (2005) Acid base titration of melanocortin peptides: Evidence of Trp rotational conformers interconvertion. Biopolymers 80:643–650

    Article  CAS  Google Scholar 

  24. Tabak M, Borissevitch IE (1992) Interaction of dipyridamole with micelles of lysophosphatidylcholine and with serum albumin: fluorescence studies. Biochim Biophys Acta 1116:241– 249

    PubMed  CAS  Google Scholar 

  25. Dhara D, Shah DO (2001) Effect of poly(ethylene glycol)s on micellar stability of sodium dodecyl sulfate. Langmuir 17:7233–7236

    Article  CAS  Google Scholar 

  26. Sen S, Sukul D, Dutta P, Bhattacharryya K (2001) Fluorescence anisotropy decay in polymer-surfactant aggregates. J Phys Chem A 105(32):7495–7500

    Article  CAS  Google Scholar 

  27. Constantinescu I, Lafleur M (2004) Influence of the lipid composition on the kinetics of concerted insertion and folding of melittin in bilayers. Biochim Biophys Acta 1667:26– 37

    Article  PubMed  CAS  Google Scholar 

  28. Romani AP, Gehlen MH, Itri R (2005) Surfactant-polymer aggregates formed by sodium dodecyl sulfate, poly-N-vinyl-2-pyrrolidone and polyethyleneglycol. Langmuir 21:127– 133

    Article  PubMed  CAS  Google Scholar 

  29. Sultan NAM, Swamy MJ (2005) Fluorescence quenching and time-resolved fluorescence studies on Trichosanthes dioica seed lectin. J Photochem Photobiol B: Biol 80:93– 100

    Article  CAS  Google Scholar 

  30. Lazaridis T (2005) Implicit solvent simulations of peptide interactions with anionic lipid membranes. Proteins: Struct Funct Bioinf 58:518–527

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—Proc. 03/05878-2) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. The authors are pleased to thank Prof. Dr. Antonio Claudio Tedesco from Departamento de Química da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo for the use of the spectrofluorometer Hitachi F4500 and Dr. Carla Cristina Schmitt Cavalheiro from Instituto de Química de São Carlos, Universidade de São Paulo, for the support in light scattering measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amando Siuiti Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romani, A.P., Marquezin, C.A., Soares, A.E.E. et al. Study of the Interaction Between Apis mellifera Venom and Micro-Heterogeneous Systems. J Fluoresc 16, 423–430 (2006). https://doi.org/10.1007/s10895-006-0077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-006-0077-9

Keywords

Navigation