Skip to main content
Log in

On the Quantitative Treatment of Donor–Donor Energy Migration in Regularly Aggregated Proteins

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

An algorithm is presented that quantitatively accounts for donor–donor energy migration (DDEM) among fluorophore-labeled proteins forming regular aggregates. The DDEM algorithm is based on Monte Carlo and Brownian dynamics simulations and applies to calculation of fluorescence depolarisation data, such as the fluorescence anisotropy. Thereby local orientations, as well as reorienting motions of the fluorescent group are considered in the absence and presence of DDEM and among, in principle, infinitely many proteins as they form regular aggregates. Here we apply the algorithm for calculating and illustrating the DDEM and the time-resolved fluorescence anisotropy under static as well as dynamic conditions within helical, linear and circular aggregate structures. A principal approach of the DDEM algorithm for analysing protein aggregates is also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-C. Rochet and P. T. Lansbury, Jr. (2000). Curr. Opin. Struct. Biol. 10, 60–68.

    Article  CAS  PubMed  Google Scholar 

  2. C. C. Dobson (2003). Nature 426, 884–890.

    Article  CAS  PubMed  Google Scholar 

  3. C. L. Masters, G. Simms, N. N. Weinman, G. Multhaup, B. McDonald, and K. Beyreuther (1985). Proc. Natl. Acad. Sci. U.S.A. 82, 4245–4249.

    Article  CAS  PubMed  Google Scholar 

  4. E. E. Egelman (1985). J. Muscle Res. Cell Motil. 6, 129–151.

    Article  CAS  PubMed  Google Scholar 

  5. P. P. J. Moens and C. C. dos Remedios (1997). Biochemistry 36, 7353–7360.

    Article  CAS  PubMed  Google Scholar 

  6. P. P. Stanley, V. V. Koronakis, and C. C. Hughes (1998). Microbiol. Mol. Biol. Rev. 62, 309–333.

    CAS  PubMed  Google Scholar 

  7. L. L. Abrami, M. M. Fivaz, and F. F. van der Goot (2000). Trends Microbiol. 8, 168–172.

    Article  CAS  PubMed  Google Scholar 

  8. S. S. Wai, M. M. Westermark, J. J. Oscarsson, J. J. Jass, E. E. Maier, R. R. Benz, and B. B. Uhlin (2003). J. Bacteriol. 185, 5491–5499.

    Article  CAS  PubMed  Google Scholar 

  9. J. J. Howard and A. A. Hyman (2003). Nature 422, 753–758.

    Article  CAS  PubMed  Google Scholar 

  10. J. J. Lakowicz (1999). Principles of Fluorescence Spectroscopy, Kluwer Academic, New York.

    Google Scholar 

  11. B. B. Valeur (2002). Molecular Fluorescence: Plenum Plublishers, Wiley-VCH, New York.

    Google Scholar 

  12. M. M. Isaksson, S. S. Kalinin, S. S. Lobov, S. S. Wang, T. T. Ny, and L. L.-Å. Johansson (2004). Phys. Chem. Chem. Phys. 6, 3001–3008.

    Article  CAS  Google Scholar 

  13. L. L. -Å. Johansson, P. P. Edman, and P.-O. Westlund (1996). J. Chem. Phys. 105, 10896–10904.

    Article  CAS  Google Scholar 

  14. P. P. Håkansson, M. M. Isaksson, P.-O. Westlund, and L. L. -Å. Johansson (2004). J. Phys. Chem. B 108, 17243–17250.

    Article  Google Scholar 

  15. S. S. Scarlata, L. L. Ehrlich, and C. C. Carter (1998). J. Mol. Biol. 277, 161–169.

    Article  CAS  PubMed  Google Scholar 

  16. J. J. Rocheleau, M. M. Edidin, and D. D. Piston (2003). Biophys. J. 84, 4078–4086.

    Article  CAS  PubMed  Google Scholar 

  17. L. L. Erijman and G. G. Weber (1991). Biochemistry 30, 1595–1599.

    Article  CAS  PubMed  Google Scholar 

  18. L. L. Erijman and G. G. Weber (1993). Photochem. Photobiol. 57, 411–415.

    Article  CAS  PubMed  Google Scholar 

  19. R. R. Varma and S. S. Mayor (1998). Nature 394, 798–801.

    Article  CAS  PubMed  Google Scholar 

  20. C. C. MacPhee, G. G. Howlett, W. W. Sawyer, and A. A. A. Clayton (1999). Biochemistry 38, 10878–10884.

    Article  CAS  PubMed  Google Scholar 

  21. S.-T. Bogen, de Korte-Kool, G., G. G. Lindblom, and L. L. -Å. Johansson (1999). J. Phys. Chem. B 103, 8344–8352.

    Article  CAS  Google Scholar 

  22. R. R. Dale, J. J. Eisinger, and W. W. Blumberg (1979). Biophys. J. 26, 161–194.

    Article  CAS  PubMed  Google Scholar 

  23. B. B. Van der Meer, G. Coker III, and S.-Y. S. Chen (1994). Resonance Energy Transfer: Theory Data, VCH Publishers, Germany.

    Google Scholar 

  24. W. W. Press, S. S. Teukolsky, and B. B. Flannery (1992). Numerical Recipes in C, Cambridge University Press, England.

    Google Scholar 

  25. D. D. Lomas, D. D. Evans, S. S. Stone, W. W. Chang, and R. R. Carell (1993). Biochemistry 32, 605–607.

    Article  Google Scholar 

  26. P. P. Elliot, J. J. Abrahams, and D. D. Lomas (1998). J. Mol. Biol. 275, 419–425.

    Article  Google Scholar 

  27. F. F. Tanaka and N. N. Mataga (1979). Photochem. Photobiol. 29, 1091–1097.

    Article  CAS  Google Scholar 

  28. L. L.-Å. Johansson, S. S. Engström, and M. M. Lindberg (1992). J. Chem. Phys. 96, 3844–3856.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart B.-Å. Johansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marushchak, D., Johansson, L.BÅ. On the Quantitative Treatment of Donor–Donor Energy Migration in Regularly Aggregated Proteins. J Fluoresc 15, 797–803 (2005). https://doi.org/10.1007/s10895-005-2989-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2989-1

Keywords

Navigation