Skip to main content
Log in

Electroporative Adjustment of pH in Living Yeast Cells: Ratiometric Fluorescence pH Imaging

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A number of vital cell functions including modulation of signaling pathways and regulation of the cellular transport critically depends on the cytoplasmic pH. Many pathological cellular changes are related to the abnormal cytosolic pH as well. Reliable and well-calibrated methods for quantification of the cytosolic pH are therefore of high importance. The pH calibration is particularly difficult in walled cells since standard methods fail. In this report we evaluated the new electroporative calibration method of the cytosolic pH in yeasts by the fluorescence microscopy. The calibration was done on living cells using pyranine as a ratiometric pH-sensitive probe. The probe was electroporatively delivered to the cytosol. We have shown that unlike the measurements in suspension the fluorescence microscopy reveals cell subpopulations with different sensitivity to the pH calibration. While the majority of the cells were well calibrated, there was found subpopulation of uncalibrated cell as well as singular cells exhibiting anomalous pH calibration due to the staining of acidic organelles. Resolution of cell subpopulations helps to achieve better pH calibration compared to the calibration in cuvette on a cell suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Bourdineaud (2000). At acidic pH, the diminished hypoxic expression of the SRP1/TIR1 yeast gene depends on the GPA2-cAMP and HOG pathways. Res. Microbiol. 151(1), 43–52.

    Article  CAS  PubMed  Google Scholar 

  2. S. H. Denison (2000). pH regulation of gene expression in fungi. Fungal. Genet. Biol. 29(2), 61–71.

    Article  CAS  PubMed  Google Scholar 

  3. A. J. Vriesema, J. Dankert, and S. A. Zaat (2000). A shift from oral to blood pH is a stimulus for adaptive gene expression of Streptococcus gordonii CH1 and induces protection against oxidative stress and enhanced bacterial growth by expression of msrA. Infect. Immun. 68(3), 1061–1068.

    Article  CAS  PubMed  Google Scholar 

  4. N. Altan, Y. Chen, M. Schindler, and S. M. Simon (1998). Defective acidification in human breast tumor cells and implications for chemotherapy. J. Exp. Med. 187(10), 1583–1598.

    Article  CAS  PubMed  Google Scholar 

  5. E. Crivellato, L. Candussio, A. M. Rosati, G. Decorti, F. B. Klugmann, and F. Mallardi (1999). Kinetics of doxorubicin handling in the LLC-PK1 kidney epithelial cell line is mediated by both vesicle formation and P-glycoprotein drug transport. Histochem. J. 31(10), 635–643.

    Article  CAS  PubMed  Google Scholar 

  6. S. Y. Chow, Y. C. Yen-Chow, and D. M. Woodbury (1992). Studies on pH regulatory mechanisms in cultured astrocytes of DBA and C57 mice. Epilepsia 33(5), 775–784.

    Article  CAS  PubMed  Google Scholar 

  7. J. W. Deitmer and C. R. Rose (1996). pH regulation and proton signalling by glial cells. Prog. Neurobiol. 48(2), 73–103.

    Article  CAS  PubMed  Google Scholar 

  8. H. J. Lin, P. Herman, and J. R. Lakowicz (2003). Fluorescence lifetime-resolved pH imaging of living cells. Cytometry Part A 52A(2), 77–89.

    Article  Google Scholar 

  9. J. Slavik (1982). Intracellular pH of yeast cells measured with fluorescent probes. FEBS Lett. 140(1), 22–26.

    Article  CAS  PubMed  Google Scholar 

  10. W. Roos (2000). Ion mapping in plant cells–methods and applications in signal transduction research. Planta 210(3), 347–370.

    Article  CAS  PubMed  Google Scholar 

  11. A. Takahashi, P. Camacho, J. D. Lechleiter, and B. Herman (1999). Measurement of intracellular calcium. Physiol. Rev. 79(4), 1089–1125.

    CAS  PubMed  Google Scholar 

  12. S. Y. Ho and G. S. Mittal (1996). Electroporation of cell membranes: A review. Crit. Rev. Biotechnol. 16(4), 349–362.

    Article  CAS  PubMed  Google Scholar 

  13. E. Neumann, S. Kakorin, and K. Toensing (1999). Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem. Bioenerg. 48(1), 3–16.

    Article  CAS  PubMed  Google Scholar 

  14. A. Pena, J. Ramirez, G. Rosas, and M. Calahorra (1995). Proton pumping and the internal pH of yeast cells, measured with pyranine introduced by electroporation. J. Bacteriol. 177(4), 1017–1022.

    CAS  PubMed  Google Scholar 

  15. B. C. Pressman (1976). Biological applications of ionophores. Annu. Rev. Biochem. 45, 501–530.

    Article  CAS  PubMed  Google Scholar 

  16. J. Vecer, A. Holoubek, and K. Sigler (2001). Fluorescence behavior of the pH-sensitive probe carboxy SNARF-1 in suspension of liposomes. J. Photochem. Photobiol. 74(1), 8–13.

    Article  CAS  Google Scholar 

  17. R. Haworth, B. Lemire, D. Crandall, E. Cragoe, and L. Fliegel (1991). Characterisation of proton fluxes across the cytoplasmic membrane of the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1098(1), 79–89.

    Article  CAS  PubMed  Google Scholar 

  18. M. Höfer, M. Calahorra, B. Klein, and A. Peńa (1996). Assessment of delta muH+ in Schizosaccharomyces pombe; intracellular inclusion of impermeable agents by electroporation. Folia Microbiol. (Praha) 41(1), 98–100.

    Article  Google Scholar 

  19. M. Calahorra, G. Martínez, A. Hernández-Cruz, and A. Peńa (1998 Aprril 30). Influence of monovalent cations on yeast cytoplasmic and vacuolar pH. Yeast 14(6), 501–515.

    Google Scholar 

  20. J. Vecer, A. Holoubek, and P. Herman (2004). Manipulation of intracellular pH by electroporation: An alternative method for fast calibration of pH in living cells. Anal. Biochem. 329(2), 348–350.

    Article  CAS  PubMed  Google Scholar 

  21. J. Gehl and L. M. Mir (1999). Determination of optimal parameters for in vivo gene transfer by electroporation, using a rapid in vivo test for cell permeabilization. Biochem. Biophys. Res. Commun. 261(2), 377–380.

    Article  CAS  PubMed  Google Scholar 

  22. B. Gabriel and J. Teissie (1997). Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane. Biophy. J. 73(5), 2630–2637.

    Article  CAS  Google Scholar 

  23. K. Kano and J. H. Fendler (1978). Pyranine as a sensitive pH probe for liposome interiors and surfaces. pH gradients across phospholipid vesicles. Biochim. Biophys. Acta. 509(2), 289–299.

    Article  CAS  PubMed  Google Scholar 

  24. Z. Darzynkiewicz, S. Bruno, G. Del Bino, W. Gorczyca, M. A. Hotz, P. Lassota, and F. Traganos (1992). Features of apoptotic cells measured by flow cytometry. Cytometry 13(8), 795–808.

    Article  CAS  PubMed  Google Scholar 

  25. O. S. Wolfbeis, E. Furlinger, H. Kroneis, and H. Marsoner (1983). Fluorimetric Analysis.1. A study on fluorescent indicators for measuring near neutral (Physiological) pH values. Fresenius Z. Für Anal. Chem. 314(2), 119–124.

    Article  CAS  Google Scholar 

  26. K. A. Giuliano and R. J. Gillies (1987). Determination of intracellular pH of BALB/c-3T3 cells using the fluorescence of pyranine. Anal. Biochem. 167(2), 362–371.

    Article  CAS  PubMed  Google Scholar 

  27. P. S. Hair, K. H. Schoenbach, and E. S. Buescher (2003). Sub-microsecond, intense pulsed electric field applications to cells show specificity of effects. Bioelectrochemistry 61(1–2), 65–72.

    Article  CAS  PubMed  Google Scholar 

  28. J. Deng, K. H. Schoenbach, E. S. Buescher, P. S. Hair, P. M. Fox, and S. J. Beebe (2003). The effects of intense submicrosecond electrical pulses on cells. Biophy. J. 84(4), 2709–2714.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Herman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herman, P., Drapalova, H., Muzikova, R. et al. Electroporative Adjustment of pH in Living Yeast Cells: Ratiometric Fluorescence pH Imaging. J Fluoresc 15, 763–768 (2005). https://doi.org/10.1007/s10895-005-2985-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2985-5

Keywords

Navigation