Skip to main content
Log in

Fluorescent Aggregates of 1-(p-Butyloxyphenyl)-4-(p-cyanophenyl)Buta-1E,3E-Diene: Temperature Sensing and Photoimaging Applications

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The use of fluorescent solid films of a 1-(p-butyloxyphenyl)-4-(p-cyanophenyl)buta-1E, 3E-diene as an efficient temperature sensor is described. The fluorescence changes in these films are proposed to occur due to a reversible temperature-dependent variation in its monomer-aggregate ratio. Photoisomerization of the butadiene chromophore in solid films was observed to occur only at elevated temperatures (> 120°C), making the material also useful for reversible photochemical generation of fluorescence patterns with nondestructive readout properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. T. McQuade, A. E. Pullen, and T. M. Swager (2000). Conjugated polymer-based chemical sensors, Chem. Rev. 100(7), 2537–2574.

    Article  CAS  PubMed  Google Scholar 

  2. A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice (1997). Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97(5), 1515–1566.

    Article  CAS  PubMed  Google Scholar 

  3. K. Rurack and U. Resch-Genger (2002). Rigidization, preorientation, and electronic decoupling—the magic triangle for the design of highly efficient fluorescent sensors and switches. Chem. Soc. Rev. 31(2), 116–127.

    Article  CAS  PubMed  Google Scholar 

  4. M.-Q. Zhu, L.-Q. Wang, G. J. Exarhos, and A. D. Q. Li (2004). Thermosensitive gold nanoparticles. J. Am. Chem. Soc. 126(9), 2656–2657.

    Article  CAS  PubMed  Google Scholar 

  5. Y. Gao and Y. Bando (2002). Nanotechnology: Carbon nanothermometer containing gallium, Nature 415, 599–599 (Brief Communication).

    Google Scholar 

  6. M. E. Lacey, A. G. Webb, and J. V. Sweedler (2000). Monitoring temperature changes in capillary electrophoresis with nanoliter-volume NMR thermometry. Anal. Chem. 72(20), 4991–4998.

    Article  CAS  PubMed  Google Scholar 

  7. S. Uchiyama, Y. Matsumura, A. P. de Silva, and K. Iwai (2003). Fluorescent molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans. Anal. Chem. 75(21), 5926–5935.

    Article  CAS  PubMed  Google Scholar 

  8. S. W. Allison and G. T. Gillies (1997). Remote thermometry with thermographic phosphors: Instrumentation and applications, Rev. Sci. Instrum. 68(7), 2615–2650.

    Article  CAS  Google Scholar 

  9. N. Chandrasekharan and L. A. Kelly (2001). A dual fluorescence temperature sensor based on perylene/exciplex interconversion, J. Am. Chem. Soc. 123(40), 9898–9899.

    Article  CAS  PubMed  Google Scholar 

  10. S. M. Lee, Y. W. Chung, J. K. Kim, and D. H. Suh (2004). A novel fluorescence temperature sensor based on a surfactant-free PVA/borax/2-naphthol hydrogel network system. J. Appl. Polym. Sci. 93(5), 2114–2118.

    Article  CAS  Google Scholar 

  11. M. Mitsuishi, S. Kikuchi, T. Miyashita, and Y. Amao (2003). Characterization of an ultrathin polymer optode and its application to temperature sensors based on luminescent europium complexes. J. Mater. Chem. 13(12), 2875–2879.

    Article  CAS  Google Scholar 

  12. J. M. Lupton (2002). A molecular thermometer based on long-lived emission from platinum octaethyl porphyrin. Appl. Phys. Lett. 81(13), 2478–2480.

    Article  CAS  Google Scholar 

  13. S. Uchiyama, N. Kawai, A. P. de Silva, and K. Iwai (2004). Fluorescent polymeric AND logic gate with temperature and pH as inputs. J. Am. Chem. Soc. 126(10), 3032–3033.

    Article  CAS  PubMed  Google Scholar 

  14. S. Uchiyama, Y. Matsumura, A. P. de Silva, and K. Iwai (2004). Modulation of the sensitive temperature range of fluorescent molecular thermometers based on thermoresponsive polymers, Anal. Chem. 76(6), 1793–1798.

    Article  CAS  PubMed  Google Scholar 

  15. D. Ross, M. Gaitan, and L. E. Locascio (2001). Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal. Chem. 73(17), 4117–4123.

    Article  CAS  PubMed  Google Scholar 

  16. J. B. Birks, (1970). Photophysics of Aromatic Molecules, Wiley-Interscience, London.

  17. Z. Xie, B. Yang, G. Cheng, L. Liu, F. He, F. Shen, Y. Ma, and S. Liu (2005). Supramolecular interactions induced fluorescence in crystal: Anomalous emission of 2,5-diphenyl-1,4- distyrylbenzene with all cis double bonds, Chem. Mater. 17(6), 1287–1289.

    Article  CAS  Google Scholar 

  18. R. Deans, J. Kim, M. R. Machacek, and T. M. Swager (2000). A poly(p-phenyleneethynylene) with a highly emissive aggregated phase. J. Am. Chem. Soc. 122(35), 8565–8566.

    Article  CAS  Google Scholar 

  19. S. Tirapattur, M. Belletête, N. Drolet, J. Bouchard, M. Ranger, M. Leclerc, and G. Durocher (2002). Spectroscopic study of intermolecular interactions in various oligofluorenes: Precursors of light-emitting polymers, J. Phys. Chem. B 106(35), 8959–8966.

    Article  CAS  Google Scholar 

  20. J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang (2001). Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. (18), 1740–1741.

    Google Scholar 

  21. W. Xu and D. Atkins (2002). Absorption and exciton emission by an aggregated cyanine dye occluded within mesoporous SBA-15. J. Phys. Chem. B 106(8), 1991–1994.

    Article  CAS  Google Scholar 

  22. A. Chowdhury, S. Wachsmann-Hogiu, P. R. Bangal, I. Raheem, and L. A. Peteanu (2001). Characterization of chiral H and J-aggregates of cyanine dyes formed by DNA templating using stark and fluorescence spectroscopies, J. Phys. Chem. B 105(48), 12196–12201.

    Article  CAS  Google Scholar 

  23. H.-C. Yeh, S.-J. Yeh, and C.-T. Chen (2003). Readily synthesised arylamino fumaronitrile for nondoped red organic light-emitting diodes. Chem. Commun. (20), 2632–2633.

    Google Scholar 

  24. H. Y. Chen, W. Y. Lam, J. D. Luo, Y. L. Ho, B. Z. Tang, D. B. Zhu, M. Wong, and H. S. Kwok (2002). Highly efficient organic light-emitting diodes with a silole-based compound. Appl. Phys. Lett. 81(4), 574–576.

    Article  CAS  Google Scholar 

  25. H. Fidder, J. Knoester, and D. A. Wiersma (1990). Superradiant emission and optical dephasing in J-aggregates. Chem. Phys. Lett. 171(5–6), 529–536.

    Article  CAS  Google Scholar 

  26. F. C. Spano, J. R. Kuklinksi, and S. Mukamel (1991). Cooperative radiative dynamics in molecular aggregates. J. Chem. Phys. 94(11), 7534–7544.

    Article  CAS  Google Scholar 

  27. S. Özçelik and D. L. Akins (1997). Nature of exciton–exciton annihilation in an aggregated cyanine Dye. J. Phys. Chem. B 101(16), 3021–3024.

    Article  Google Scholar 

  28. E. O. Potma and D. A. Wiersma (1998). Exciton superradiance in aggregates: The effect of disorder, higher order exciton–phonon coupling, and dimensionality. J. Chem. Phys. 108(12), 4894–4903.

    Article  CAS  Google Scholar 

  29. D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker (1999). Room temperature polariton emission from strongly coupled organic semiconductor microcavities. Phys. Rev. Lett. 82(16–19), 3316–3319.

    Google Scholar 

  30. J. Chen, B. Xu, X. Ouyang, B. Z. Tang, and Y. Cao (2004). Aggregation-induced emission of cis,cis-1,2,3,4-tetraphenyl butadiene from restricted intramolecular rotation. J. Phys. Chem. A 108(37), 7522–7526.

    Article  CAS  Google Scholar 

  31. R. Davis, V. A. Mallia, and S. Das (2003). Reversible photochemical phase transition behavior of alkoxy-cyano-substituted diphenylbutadiene liquid crystals. Chem. Mater. 15(5), 1057–1063.

    Article  CAS  Google Scholar 

  32. R. Davis, N. P. Rath, and S. Das (2004). Thermally reversible fluorescent polymorphs of alkoxy-cyano-substituted diphenylbutadienes: Role of crystal packing in solid state fluorescence. Chem. Commun. (1), 74–75.

  33. R. S. H. Liu (2001). Photoisomerization by hula-twist: A fundamental supramolecular photochemical reaction. Acc. Chem. Res. 34(7), 555–562.

    Article  CAS  PubMed  Google Scholar 

  34. B. Dellinger and M. Kasha (1976). Phenomenology of solvent matrix spectroscopic effects. Chem. Phys. Lett. 38(1), 9–14.

    Article  CAS  Google Scholar 

  35. Y.-P. Sun, J. Saltiel, E. A. Hoburg, and D. Waldeck (1991). Application of the medium-enhanced barrier model to the photoisomerization dynamics of substituted stilbenes in n-alkane solvents. J. Phys. Chem. 95(25), 10336–10344.

    Article  CAS  Google Scholar 

  36. R. Davis, PhD Thesis, University of Kerala, Trivandrum, India.

  37. N. Tamaoki, S. Yoshimura, and T. Yamaoka (1992). A photochromic memory with a nondestructive read-out property. Thin Solid Films 221(1–2), 132–139.

    Article  CAS  Google Scholar 

  38. T. B. Norsten and N. R. Branda (2001). Photoregulation of fluorescence in a porphyrinic dithienylethene photochrome. J. Am. Chem. Soc. 123(8), 1784–1785.

    Article  CAS  PubMed  Google Scholar 

  39. K. Uchida, A. Takata, M. Saito, A. Murakami, S. Nakamura, and M. Irie (2003). Synthesis of novel photochromic films by oxidation polymerization of diarylethenes containing phenol groups. Adv. Funct. Mater. 13(10), 755–762.

    Article  CAS  Google Scholar 

  40. S. H. Kawai, S. L. Gilat, and J.-M. Lehn (1995). A dual-mode molecular switching device—bisphenolic diarylethenes with integrated photochromic and electrochromic properties. Chem. Eur. J. 1, 285–293.

    Article  CAS  Google Scholar 

  41. K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki (1988). Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer. Langmuir 4(5), 1214–1216.

    Article  CAS  Google Scholar 

  42. T. Yamaguchi, K. Uchida, and M. Irie (1997). Asymmetric photocyclization of diarylethene derivatives. J. Am. Chem. Soc. 119(26), 6066–6071.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, R., Das, S. Fluorescent Aggregates of 1-(p-Butyloxyphenyl)-4-(p-cyanophenyl)Buta-1E,3E-Diene: Temperature Sensing and Photoimaging Applications. J Fluoresc 15, 749–753 (2005). https://doi.org/10.1007/s10895-005-2983-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2983-7

Keywords

Navigation