Skip to main content
Log in

The Fluorescence Bioassay Platforms on Quantum Dots Nanoparticles

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this paper, we present the optical properties and the platforms on fluorescent quantum dots for biological labeling, biomedical engineering and biosensor in molecular imaging. Quantum dots possess several properties that make them very attractive for fluorescent tagging: broad excitation spectrum, narrow emission spectrum, precise tunability of their emission peak, longer fluorescence lifetime than organic fluorophores and negligible photobleaching. We describe how to take such advantages of quantum dots to develop the technology and employ it to build assay platforms. Finally, ultrasensitivity, multicolor, and multiplexing of the technology of semiconductor quantum dots open up promising and interesting possibilities for bioassay platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Taylor, M. M. Fang, and S. Nie (2000). Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. Anal. Chem. 72, 1979–1986.

    Article  CAS  PubMed  Google Scholar 

  2. J. J. Storhoff, R. Elghanian, R. Music, C. A. Mirkin, and R. L. Letsinger (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120, 1959–1964.

    Article  CAS  Google Scholar 

  3. R. A. Reynolds, C. A. Mikin, and R. L. Letsinger (2000). Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. J. Am. Chem. Soc. 122, 3795–3796.

    Article  CAS  Google Scholar 

  4. M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos (1998). Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2015.

    Article  CAS  Google Scholar 

  5. W. W. C. Chan and S. M. Nie (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018.

    Article  CAS  PubMed  Google Scholar 

  6. S. Empedocles and M. G. Bawendi(1999). Spectroscopy of single CdSe nanocrystallites. Acc. Chem. Res. 32, 389–396

    Google Scholar 

  7. J. R. Heath (1995). The chemistry of size and order on a nanometer scale. Science 270, 1315–1316.

    Article  CAS  Google Scholar 

  8. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus (1996). Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802.

    Google Scholar 

  9. M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus (1992). Luminescence properties of CdSe quantum crystallites: Resonance between interior and surface localized states. J. Chem. Phys. 96, 946–954.

    Article  CAS  Google Scholar 

  10. M. G. Bawendi, M. L. Steigerwald, and L. E. Brus (1990). The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem. 41, 477–496.

    CAS  Google Scholar 

  11. M. Nirmal and L. Brus (1999). Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 32, 407–414.

    Article  CAS  Google Scholar 

  12. J. E. B. Katari, V. L. Colvin, and A. P. Alivisatos (1994). X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J. Phys. Chem. 98, 4109–4117

    Article  CAS  Google Scholar 

  13. J.Tittel, W. Gohde, F. Koberling, T. Basche, A. Kornowski, H. Weller, and A. Eychmuller (1997). Fluorescence spectroscopy on single CdS nanocrystals. J. Phys. Chem. B 101, 3013–3016.

    Article  CAS  Google Scholar 

  14. F. V. Mikulec, M. Kuno, M. Bennati, D. A. Hall, R. G. Griffin, and M. G. Bawendi (2000). Organometallic synthesis and spectroscopic characterization of manganese-doped CdSe nanocrystals. J. Am. Soc. 122, 2532–2540.

    Article  CAS  Google Scholar 

  15. Y. Wang and N. Herron (1991). Nanometer-sized semiconductor clusters: Materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95, 525–532.

    Article  CAS  Google Scholar 

  16. A. P. Alivisatos (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937.

    Article  CAS  Google Scholar 

  17. A. Henglein (1989). Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89, 1861–1873.

    Article  CAS  Google Scholar 

  18. X. G. Peng, J. Wickham, and A. P. Alivisatos (1998). Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 120, 5343–5344.

    Article  CAS  Google Scholar 

  19. A. P. Alivisatos (1996). Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239.

    Article  CAS  Google Scholar 

  20. N. Gaponik, I. L. Radtchenko, G. B. Sukhorukov, H. Weller, A. L. Rogach (2002). Toward encoding combinatorial libraries: Charge-driven microencapsulation of semiconductor nanocrystals luminescing in the visible and near IR. Adv. Mat. 14, 879.

  21. U. Banin and O. Millo (2003). Tunneling and optical sepectroscopy of semiconductor nanocrystals. Ann. Rev. Phys. Chem. 54, 465–492.

    Article  CAS  Google Scholar 

  22. R. E. Bailey and S. Nie (2003). Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125(23), 7100–7106.

    Article  CAS  PubMed  Google Scholar 

  23. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotech. 22, 969–976.

    Article  CAS  Google Scholar 

  24. H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi (2000). Self-assembly of CdSe–ZnS quantum dots bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122, 12142–12150.

    Article  CAS  Google Scholar 

  25. L. C. Mattheakis, J. M. Dias, Y.-J. Choi, J. Gong, M. P. Bruchez, J. Liu, and E. Wang (2004). Optical coding of mammalian cells using semiconductor quantum dots. Anal. Biochem. 327, 200–208.

    Google Scholar 

  26. M. Y. Han, X. Gao, J. Z. Su, and S. M. Nie (2001). Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotech. 19, 631–635.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiancai Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Liu, B., Zhang, H. et al. The Fluorescence Bioassay Platforms on Quantum Dots Nanoparticles. J Fluoresc 15, 729–733 (2005). https://doi.org/10.1007/s10895-005-2980-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2980-5

Keywords

Navigation