Emerging Applications of Phosphorescent Metalloporphyrins


The subject of phosphorescent metalloporphyrins is reviewed, focusing mainly on the development and application of Pt- and Pd-porphyrins. A summary of their general chemical and photophysical properties, and guidelines for rational design of the phosphorescent labels, bioconjugates and probes is given. Examples of different detection formats and particular bioanalytical applications developed in recent years are presented. The potential of phosphorescent porphyrin label methodology is discussed and compared to that of the long-decay fluorescent lanthanide chelates and other common fluorophores.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. E. Falk (1964). Porphyrins and Metalloporphyrins, Elsevier, Amsterdam.

    Google Scholar 

  2. 2.

    M. Gouterman (1961). Spectra of porphyrins J. Mol. Spectrosc. 6, 138–163.

    Article  Google Scholar 

  3. 3.

    M. Gouterman (1959). Study of the effects of substitution on the absorption spectra of porphin. J. Chem. Phys. 30(5), 1139–1161.

    Article  Google Scholar 

  4. 4.

    M. Gouterman and G. Khalil (1974). Porphyrin free base phosphorescence. J. Mol. Spectrosc. 53(1), 88–100.

    Article  Google Scholar 

  5. 5.

    M. Gouterman (1978). In D. Dolphin (Ed.), The Porphyrins, Academic Press, New York.

    Google Scholar 

  6. 6.

    J. B. Callis, J. M. Knowles, and M. Gouterman (1973). Porphyrins. XXVI. Triplet excimer quenching of free base, zinc, palladium, and platinum complexes. J. Phys. Chem. 77(2), 154–157.

    Article  PubMed  Google Scholar 

  7. 7.

    D. Eastwood and M. Gouterman (1970). Porphyrins. XVIII. Luminescence of (Co), (Ni), Pd, Pt complexes J. Mol. Spectrosc. 35(3), 359–375.

    Article  Google Scholar 

  8. 8.

    P. G. Seybold and M. Gouterman (1969). Porphyrins. 13. Fluorescence spectra and quantum yields. J. Mol. Spectrosc. 31(1), 1.

    Article  Google Scholar 

  9. 9.

    J. B. Callis, M. Gouterman, Y. M. Jones, and B. H. Henderson (1971). Porphyrins. XXII. Fast fluorescence, delayed fluorescence, and quasiline structure in palladium and platinum complexes. J. Mol. Spectrosc. 39(3), 410–420.

    Article  Google Scholar 

  10. 10.

    M. Kaska (1952). Collisional perturbation of spin–orbit coupling and the mechanism of fluorescence quenching. A visual demonstration of the perturbation. J. Chem. Phys. 20, 71–74.

    Article  Google Scholar 

  11. 11.

    A. Harriman (1981). Luminescence of porphyrins and metalloporphyrins. 3. Heavy-atom effects. J. Chem. Soc. Faraday Trans. II 77(7), 1281–1291.

    Article  Google Scholar 

  12. 12.

    L. Bajema, M. Gouterman, and C. B. Rose (1971). Porphyrins. XXIII. Fluorescence of the second excited singlet and quasiline structure of zinc tetrabenzporphin. J. Mol. Spectrosc. 39(3), 421–431.

    Article  Google Scholar 

  13. 13.

    I. E. Zalesskii, V. N. Kotlo, A. N. Sevchenko, K. N. Solov’ev, and S. F. Shkirman (1973). Dokl. Akad. Nauk. Sssr. 210, 312.

    Google Scholar 

  14. 14.

    I. E. Zalesskii, V. N. Kotlo, A. N. Sevchenko, K. N. Solov’ev, and S. F. Shkirman (1974). Dokl. Akad. Nauk. Sssr. 218, 324.

    Google Scholar 

  15. 15.

    C. A. Parker (1968). Photoluminescence of Solutions, Elsevier, Amsterdam.

    Google Scholar 

  16. 16.

    D. B. Papkovsky and G. V. Ponomarev (2001). Spectral-luminescent study of the porphyrin-diketones and their complexes. Spectrochim. Acta A 57(9), 1897–1905.

    Google Scholar 

  17. 17.

    D. B. Papkovsky, G. V. Ponomarev, W. Trettnak, and P. O’Leary (1995). Phosphorescent complexes of porphyrin ketones: Optical properties and application to oxygen sensing. Anal. Chem. 67, 4112–4117.

    Article  Google Scholar 

  18. 18.

    S. B. Brown, M. Shillcock, and P. Jones (1976). Equilibrium and kinetic studies of the aggregation of porphyrins in aqueous solution. Biochem. J. 153(2), 279–285.

    PubMed  Google Scholar 

  19. 19.

    A. P. Savitski, E. V. Vorobyova, I. V. Berezin, and N. N. Ugarova (1981). Acid–base properties of protoporphyrin-Ix—Its dimethyl ester and heme solubilized on surfactant micelles—Spectrophotometric and fluorometric titration. J. Colloid Interface Sci. 84(1), 175–181.

    Article  Google Scholar 

  20. 20.

    C. R. Lambert, E. Reddi, J. D. Spikes, M. A. Rodgers, and G. Jori (1986). The effects of porphyrin structure and aggregation state on photosensitized processes in aqueous and micellar media. Photochem. Photobiol. 44(5), 595–601.

    PubMed  Google Scholar 

  21. 21.

    J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson (1987). An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J. Biol. Chem. 262(12), 5476–5482.

    PubMed  Google Scholar 

  22. 22.

    G. Khalil, M. Gouterman, and E. Green (1989). Method for measuring oxygen concentration, US Patent, 4,810,655.

  23. 23.

    A. Blum and L. I. Grossweiner (1985). Singlet oxygen generation by hematoporphyrin-IX, uroporphyrin-I and hematoporphyrin derivative at 546 nm in phosphate buffer and in the presence of egg phosphatidylcholine liposomes. Photochem. Photobiol. 41(1), 27–32.

    PubMed  Google Scholar 

  24. 24.

    T. J. Dougherty and S. L. Marcus (1992). Photodynamic therapy. Eur. J. Cancer 28A(10), 1734–1742.

    Article  PubMed  Google Scholar 

  25. 25.

    M. Trinkel, W. Trettnak, and C. Kolle (2000). Oxygen trace analysis utilising a miniaturised luminescence lifetime-based sensor instrumentation. Quim. Anal. 19, 112–117.

    Google Scholar 

  26. 26.

    O. Stern and M. Volmer (1919). Uber die ablingungszeit der fluoreszenz. Physik. Zeitschr 20, 183–188.

    Google Scholar 

  27. 27.

    D. B. Papkovsky (2004). Methods in optical oxygen sensing: Protocols and critical analyses. Method Enzymol. 381, 715–735.

    Google Scholar 

  28. 28.

    J. N. Demas, B. A. DeGraff, and P. B. Coleman (1999). Oxygen sensors based on luminescence quenching. Anal. Chem. 71(23), 793A–800A.

    PubMed  Google Scholar 

  29. 29.

    D. F. Wilson, J. M. Vanderkooi, T. J. Green, G. Maniara, S. P. DeFeo, and D. C. Bloomgarden (1987). A versatile and sensitive method for measuring oxygen. Adv. Exp. Med. Biol. 215, 71–77.

    PubMed  Google Scholar 

  30. 30.

    L. W. Lo, C. J. Koch, and D. F. Wilson (1996). Calibration of oxygen-dependent quenching of the phosphorescence of Pd-meso-tetra (4-carboxyphenyl) porphine: A phosphor with general application for measuring oxygen concentration in biological systems. Anal. Biochem. 236(1), 153–160.

    Article  PubMed  Google Scholar 

  31. 31.

    S. A. Vinogradov and D. F. Wilson (1995). Metallotetraben- zoporphyrins—New phosphorescent probes for oxygen measurements. J. Chem. Soc. Perkin Trans. 2(1), 103–111.

    Google Scholar 

  32. 32.

    J. Hynes, S. Floyd, A. E. Soini, R. O’Connor, and D. B. Papkovsky (2003). Fluorescence-based cell viability screening assays using water-soluble oxygen probes. J. Biomol. Screen. 8(3), 264–272.

    Article  PubMed  Google Scholar 

  33. 33.

    A. P. Savitskii, D. B. Papkovskii, G. V. Ponomarev, and I. V. Berezin (1989). Phosphorescence immunoassay—Metalloporphyrins as an alternative to rare-earth fluorescent labels. Dokl. Akad. Nauk. Sssr. 304(4), 1005–1008.

    PubMed  Google Scholar 

  34. 34.

    R. R. de Haas, R. P. van Gijlswijk, E. B. van der Tol, H. J. Zijlmans, T. Bakker-Schut, J. Bonnet, N. P. Verwoerd, and H. J. Tanke (1997). Platinum porphyrins as phosphorescent label for time-resolved microscopy. J. Histochem. Cytochem. 45(9), 1279–1292.

    PubMed  Google Scholar 

  35. 35.

    S. P. Martsev, V. Preygerzon, Y. I. Melnikova, Z. I. Kravchuk, G. V. Ponomarev, V. E. Lunev, and A. P. Savitsky (1995). Modification of monoclonal and polyclonal IgG with palladium(II) coproporphyrin-I—Stimulatory and inhibitory functional-effects induced by 2 different methods. J. Immunol. Methods 186(2), 293–304.

    Article  PubMed  Google Scholar 

  36. 36.

    Y. I. Melnikova, Z. I. Kravchuk, V. A. Preygerzon, and S. P. Martsev (1997). Functional activation of antibodies on modification with Pd(II) coproporphyrin I N-hydroxysuccinimide ester. Biochem. Moscow 62(8), 924–927.

    Google Scholar 

  37. 37.

    M. M. Koskelin, A. E. Soini, N. J. Meltola, and G. V. Ponomarev (2002). Phosphorescent labeling reagents of platinum(II) and palladium(II) coproporphyrin-II. Preparation and performance characteristics. J. Porphyr. Phthalocya 6(7–8), 533–543.

    Google Scholar 

  38. 38.

    A. E. Soini, D. V. Yashunsky, N. J. Meltola, and G. V. Ponomarev (2001). Preparation of monofunctional and phosphorescent palladium(II) and platinum(II) coproporphyrin labeling reagents. J. Porphyr. Phthalocya 5(10), 735–741.

    Article  Google Scholar 

  39. 39.

    G. V. Ponomarev, D. V. Yashunsky, N. J. Meltola, and A. E. Soini (2001). Porphyrin compounds, their conjugates and assay methods based on the use of said conjugates, US Patent, 6,582,930.

  40. 40.

    A. E. Soini, D. V. Yashunsky, N. J. Meltola, and G. V. Ponomarev (2003). Influence of linker unit on performance of palladium(II) coproporphyrin labelling reagent and its bioconjugates. Luminescence 18(3), 182–192.

    Article  PubMed  Google Scholar 

  41. 41.

    T. C. O’Riordan, A. E. Soini, J. T. Soini, and D. B. Papkovsky (2002). Performance evaluation of the phosphorescent porphyrin label: Solid-phase immunoassay of alpha-fetoprotein. Anal. Chem. 74(22), 5845–5850.

    Article  PubMed  Google Scholar 

  42. 42.

    T. C. O’Riordan, A. E. Soini, and D. B. Papkovsky (2001). Monofunctional derivatives of coproporphyrins for phosphorescent labeling of proteins and binding assays. Anal. Biochem. 290(2), 366–375.

    Article  PubMed  Google Scholar 

  43. 43.

    H. J. Tanke, R. R. De Haas, G. Sagner, M. Ganser, and R. P. van Gijlswijk (1998). Use of platinum coproporphyrin and delayed luminescence imaging to extend the number of targets FISH karyotyping. Cytometry 33(4), 453–459.

    Article  PubMed  Google Scholar 

  44. 44.

    O. S. Fedorova, A. P. Savitskii, K. G. Shoikhet, and G. V. Ponomarev (1990). Palladium(II)-coproporphyrin-I as a photoactivable group in sequence-specific modification of nucleic-acids by oligonucleotide derivatives. FEBS Lett. 259(2), 335–337.

    Article  PubMed  Google Scholar 

  45. 45.

    P. J. O’Sullivan, M. Burke, A. E. Soini, and D. B. Papkovsky (2002). Synthesis and evaluation of phosphorescent oligonucleotide probes for hybridisation assays. Nucleic Acids Res. 30(21), e114.

    Article  PubMed  Google Scholar 

  46. 46.

    D. J. O’Shea, P. J. O’Sullivan, G. V. Ponomarev, and D. P. Papkovsky (2004). Post-PCR detection of nucleic acids using metalloporphyrin labels and time-resolved fluorescence. Anal. Chim. Acta. 537, 111–117.

    Article  Google Scholar 

  47. 47.

    I. Hemmila and V.-M. Mukkala (2001). Time-resolution in fluorometry technologies, labels, and applications in bioanalytical assays. Crit. Rev. Clin. Lab. Sci. 38(6), 441–519.

    Article  Google Scholar 

  48. 48.

    S. W. Englander, D. B. Calhoun, and J. J. Englander (1987). Biochemistry without oxygen. Anal. Biochem. 161(2), 300–306.

    Article  PubMed  Google Scholar 

  49. 49.

    J. R. Lakowicz (1983). Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Google Scholar 

  50. 50.

    A. P. Savitski, D. B. Papkovskii, and I. V. Berezin (1987). Fluorescent immunoassay. Porphyrins as a new type of label for immunoassay. Dokl. Akad. Nauk. Sssr. 293, 744.

    PubMed  Google Scholar 

  51. 51.

    A. P. Savitsky, K. N. Solovyov, and D. B. Papkovsky (1990). Time-resolved fluoroimmunoassay—Concepts, realization and prospects. Izv an Sssr Fiz 54(3), 518–523.

    Google Scholar 

  52. 52.

    E. Puklin, B. Carlson, S. Gouin, C. Costin, E. Green, S. Ponomarev, H. Tanji, and M. Gouterman (2000). Ideality of pressure-sensitive paint. I. Platinum tetra(pentafluorophenyl)porphine in fluoroacrylic polymer. J. Appl. Polym. Sci. 77(13), 2795–2804.

    Article  Google Scholar 

  53. 53.

    S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson (2002). A method for measuring oxygen distributions in tissue using frequency domain phosphorometry. Comp. Biochem. Phys. A 132(1), 147–152.

    Google Scholar 

  54. 54.

    D. B. Papkovsky, M. A. Smiddy, N. Y. Papkovskaia, and J. P. Kerry (2002). Nondestructive measurement of oxygen in modified atmosphere packaged hams using a phase-fluorimetric sensor system. J. Food Sci. 67(8), 3164–3169.

    Google Scholar 

  55. 55.

    F. C. O’Mahony, T. C. O’Riordan, N. Papkovskaia, V. I. Ogurtsov, J. P. Kerry, and D. B. Papkovsky (2004). Assessment of oxygen levels in convenience-style muscle-based Sous Vide products through optical means and impact on shelf-life stability. Packag. Technol. Sci. 17(4), 225–234.

    Article  Google Scholar 

  56. 56.

    C. Kolle, W. Gruber, W. Trettnak, K. Biebernik, C. Dolezal, F. Reininger, and P. OLeary (1997). Fast optochemical sensor for continuous monitoring of oxygen in breath-gas analysis. Sens. Actuators B Chem. 38(1–3), 141–149.

    Article  Google Scholar 

  57. 57.

    T. C. O’Riordan, D. Buckley, V. Ogurtsov, R. O’Connor, and D. B. Papkovsky (2000). A cell viability assay based on monitoring respiration by optical oxygen sensing. Anal. Biochem. 278(2), 221–227.

    Article  PubMed  Google Scholar 

  58. 58.

    T. J. Green, D. F. Wilson, J. M. Vanderkooi, and S. P. DeFeo (1988). Phosphorimeters for analysis of decay profiles and real time monitoring of exponential decay and oxygen concentrations. Anal. Biochem. 174(1), 73–79.

    Article  PubMed  Google Scholar 

  59. 59.

    J. M. Vanderkooi and J. W. Berger (1989). Excited triplet states used to study biological macromolecules at room temperature. Biochim. Biophys. Acta 976(1), 1–27.

    PubMed  Google Scholar 

  60. 60.

    J. M. Vanderkooi, W. W. Wright, and M. Erecinska (1990). Oxygen gradients in mitochondria examined with delayed luminescence from excited-state triplet probes. Biochemistry 29(22), 5332–5338.

    Article  PubMed  Google Scholar 

  61. 61.

    W. L. Rumsey, J. M. Vanderkooi, and D. F. Wilson (1988). Imaging of phosphorescence: A novel method for measuring oxygen distribution in perfused tissue. Science 241(4873), 1649–1651.

    PubMed  Google Scholar 

  62. 62.

    D. F. Wilson, S. A. Vinogradov, B. W. Dugan, D. Biruski, L. Waldron, and S. A. Evans (2002). Measurement of tumor oxygenation using new frequency domain phosphorometers. Comp. Biochem. Phys. A 132(1), 153–159.

    Google Scholar 

  63. 63.

    S. A. Vinogradov and D. F. Wilson (1997). Extended porphyrins—New IR phosphors for oxygen measurements. Oxygen Transport Tissue XVIII 411, 597–603.

    Google Scholar 

  64. 64.

    S. A. Vinogradov, M. A. Fernandez-Searra, B. W. Dugan, and D. F. Wilson (2001). Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples. Rev. Sci. Instrum. 72(8), 3396–3406.

    Article  Google Scholar 

  65. 65.

    J. Alderman, J. Hynes, S. M. Floyd, J. Kruger, R. O’Connor, and D. B. Papkovsky (2004). A low-volume platform for cell-respirometric screening based on quenched-luminescence oxygen sensing. Biosens. Bioelectron. 19(11), 1529–1535.

    Article  PubMed  Google Scholar 

  66. 66.

    J. Hynes, C. O’Donovan, F. C. O’Mahony, and D. P. Papkovsky (2004). Biological screening applications using optical oxygen sensing and soluble phosphorescent oxygen probes. In Presented at the Eight World Congress on Biosensors, Granada, Spain.

  67. 67.

    J. Hynes, T. C. O’Riordan, J. Curtin, T. G. Cotter, and D. B. Papkovsky (2005). Fluorescence based oxygen uptake analysis in the study of metabolic responses to apoptosis induction. J. Immunol. Methods, submitted for publication.

  68. 68.

    D. B. Papkovskii, A. P. Savitskii, A. I. Yaropolov, G. V. Ponomarev, V. D. Rumyantseva, and A. F. Mironov (1991). Flow-injection glucose determination with long-wave luminescent oxygen probes. Biomed. Sci. 2, 63–67.

    PubMed  Google Scholar 

  69. 69.

    D. B. Papkovsky, T. C. O’Riordan, and G. G. Guilbault (1999). An immunosensor based on the glucose oxidase label and optical oxygen detection. Anal. Chem. 71(8), 1568–1573.

    Article  PubMed  Google Scholar 

  70. 70.

    E. Soini and I. Hemmila (1979). Fluoroimmunoassay: Present status and key problems. Clin. Chem. 25(3), 353–361.

    PubMed  Google Scholar 

  71. 71.

    I. I. Hemmila (1999). LANCEtrade mark: Homogeneous assay platform for HTS. J. Biomol. Screen. 4(6), 303–308.

    Article  PubMed  Google Scholar 

  72. 72.

    H. Bazin, M. Preaudat, E. Trinquet, and G. Mathis (2001). Homogeneous time resolved fluorescence resonance energy transfer using rare earth cryptates as a tool for probing molecular interactions in biology. Spectrochim. Acta A Mol. Biomol. Spectrosc. 57(11), 2197–2211.

    Article  PubMed  Google Scholar 

  73. 73.

    M. V. Demcheva, E. Y. Mantrova, A. Savitsky, O. Behrsing, B. Micheel, and I. Hemmila (1995). Micelle stabilized phosphorescent immunoassay based on bispecific antibodies against label and antigen. Anal. Lett. 28(2), 249–258.

    Google Scholar 

  74. 74.

    E. Y. Mantrova, M. V. Demcheva, and A. P. Savitsky (1994). Universal phosphorescence immunoassay. Anal. Biochem. 219(1), 109–114.

    Article  PubMed  Google Scholar 

  75. 75.

    R. Huttunen, P. Harkonen, J. T. Soini, and A. E. Soini (2004). Application of phosphorescent metalloporphyrin labels in the study of cytokine induced expression of cell surface bound ICAM-1. Anal. Biochem., submitted for publication.

  76. 76.

    T. C. O’Riordan, J. Hynes, D. Yashunski, G. V. Ponomarev, and D. B. Papkovsky (2005). Homogeneous assays for cellular proteases employing the platinum(II)-coproporphyrin label and time-resolved phosphorescence. Anal. Biochem. 342(1), 111–119.

    Article  PubMed  Google Scholar 

  77. 77.

    E. G. Matveeva, E. V. Gribkova, J. R. Sanborn, S. J. Gee, B. D. Hammock, and A. P. Savitsky (2001). Development of a homogeneous phosphorescent immunoassay for the detection of polychlorinated dibenzo-p-dioxins. Anal. Lett. 34(13), 2311–2320.

    Article  Google Scholar 

  78. 78.

    V. V. Didenko (2001). DNA probes using fluorescence resonance energy transfer (FRET): Designs and applications. Biotechniques 31, 1106–1121.

    PubMed  Google Scholar 

  79. 79.

    R. R. de Haas, R. P. M. van Gijlswijk, E. B. van der Tol, J. Veuskens, H. E. van Gijssel, R. B. Tijdens, J. Bonnet, N. P. Verwoerd, and H. J. Tanke (1999). Phosphorescent platinum/palladium coproporphyrins for time-resolved luminescence microscopy. J. Histochem. Cytochem. 47(2), 183–196.

    PubMed  Google Scholar 

  80. 80.

    M. Burke, P. J. O’Sullivan, A. E. Soini, H. Berney, and D. B. Papkovsky (2003). Evaluation of the phosphorescent palladium(II)-coproporphyrin labels in separation-free hybridization assays. Anal. Biochem. 320(2), 273–280.

    Article  PubMed  Google Scholar 

  81. 81.

    E. J. Hennink, R. de Haas, N. P. Verwoerd, and H. J. Tanke (1996). Evaluation of a time-resolved fluorescence microscope using a phosphorescent Pt-porphine model system. Cytometry 24(4), 312–320.

    Article  PubMed  Google Scholar 

  82. 82.

    D. B. Papkovsky, J. Olah, I. V. Troyanovsky, N. A. Sadovsky, V. D. Rumyantseva, A. F. Mironov, A. I. Yaropolov, and A. P. Savitsky (1992). Phosphorescent polymer films for optical oxygen sensors. Biosens. Bioelectron. 7(3), 199–206.

    Article  Google Scholar 

  83. 83.

    D. B. Papkovsky, G. V. Ponomarev, and O. S. Wolfbeis (1996). Longwave luminescent porphyrin probes. Spectrochim. Acta A 52(12), 1629–1638.

    Google Scholar 

  84. 84.

    B. T. Atwater (1992). Substituent effects of the excited-state properties of platinum meso-tetraphenylporphyrins. J. Fluoresc. 2(4), 237–246.

    Article  Google Scholar 

  85. 85.

    J. M. Vanderkooi, D. B. Calhoun, and S. W. Englander (1987). On the prevalence of room-temperature protein phosphorescence. Science 236(4801), 568–569.

    PubMed  Google Scholar 

  86. 86.

    D. F. Wilson, W. L. Rumsey, T. J. Green, and J. M. Vanderkooi (1988). The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J. Biol. Chem. 263(6), 2712–2718.

    PubMed  Google Scholar 

  87. 87.

    D. F. Wilson, S. M. Evans, W. T. Jenkins, S. A. Vinogradov, E. Ong, and M. W. Dewhirst (1998). Oxygen distributions within R3230Ac tumors growing in dorsal flap window chambers in rats. Oxygen Transport Tissue XX 454, 603–609.

    Google Scholar 

  88. 88.

    F. C. O’Mahony, C. O’Donovan, J. Hynes, T. Moore, J. Davenport, and D. B. Papkovsky (2005). Optical oxygen microrespirometry as a platform for environmental toxicology and animal model studies. Environ. Sci. Tech. 39, 5010–5014.

    Article  Google Scholar 

  89. 89.

    A. E. Soini, A. Kuusisto, N. J. Meltola, E. Soini, and L. Seveus (2003). A new technique for multiparameter imaging microscopy: Use of long decay time photoluminescent labels enables multiple color immunocytochemistry with low channel-to-channel crosstalk. Microsc. Res. Tech. 62(5), 396–407.

    Article  PubMed  Google Scholar 

  90. 90.

    A. E. Soini, L. Seveus, N. J. Meltola, D. B. Papkovsky, and E. Soini (2002). Phosphorescent metalloporphyrins as labels in time-resolved luminescence microscopy: Effect of mounting on emission intensity. Microsc. Res. Tech. 58(2), 125–131.

    Article  PubMed  Google Scholar 

  91. 91.

    P. Canty, L. Vare, M. Hakansson, A. M. Spehar, D. Papkovsky, T. Ala-Kleme, J. Kankare, and S. Kulmala (2002). Time-resolved electrochemiluminescence of platinum(II) coproporphyrin. Anal. Chim. Acta 453(2), 269–279.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Dmitri B. Papkovsky.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Papkovsky, D.B., O’Riordan, T.C. Emerging Applications of Phosphorescent Metalloporphyrins. J Fluoresc 15, 569–584 (2005). https://doi.org/10.1007/s10895-005-2830-x

Download citation


  • Metalloporphyrins
  • labels
  • probes
  • phosphorescence
  • time-resolved fluorescence
  • bioanalytical applications