Skip to main content
Log in

Optimization of Gold Nanoparticle-Based DNA Detection for Microarrays

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

DNA microarrays are promising tools for fast and highly parallel DNA detection by means of fluorescence or gold nanoparticle labeling. However, substrate modification with silanes (as a prerequisite for capture DNA binding) often leads to inhomogeneous surfaces and/or nonspecific binding of the labeled DNA. We examined both different substrate cleaning and activating protocols and also different blocking strategies for optimizing the procedures, especially those for nanoparticle labeling. Contact angle measurements as well as fluorescence microscopy, atomic force microscopy (AFM), and a flatbed scanner were used to analyze the multiple-step process. Although the examined different cleaning and activating protocols resulted in considerably different contact angles, meaning different substrate wettability, silanization led to similar hydrophobic surfaces which could be revealed as smooth surfaces of about 2–4 nm roughness. The two examined silanes (3-glycidoxypropyltrimethoxysilane (GOPS) and 3-aminopropyltriethoxysilane (APTES)) differed in their DNA binding homogeneity, maximum signal intensities, and sensitivity. Nonspecific gold binding on APTES/PDC surfaces could be blocked by treatment in 3% bovine serum albumin (BSA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Schena, R. A. Heller, T. P. Theriault, K. Konrad, E. Lachenmeier, and R. W. Davis (1998). Microarrays: Biotechnology’s discovery platform for functional genomics. Trends Biotechnol. 16, 301–306.

    CAS  PubMed  Google Scholar 

  2. C. M. Niemeyer and D. Blohm (1999). DNA Microarrays. Angew Chem. 111, 3039–3043.

    Google Scholar 

  3. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff (1996). A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609.

    CAS  PubMed  Google Scholar 

  4. A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez Jr., and P. G. Schultz (1996). Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611.

    CAS  PubMed  Google Scholar 

  5. J. Reichert, A. Csaki, J. M. Köhler, and W. Fritzsche (2000). Chip-based optical detection of DNA hybridization by means of Nanobead Labeling. Anal. Chem. 72, 6025–6029.

    CAS  PubMed  Google Scholar 

  6. T. A. Taton, C. A. Mirkin, and R. L. Letsinger (2000). Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760.

    CAS  PubMed  Google Scholar 

  7. R. Möller, A. Csaki, J. M. Köhler, and W. Fritzsche (2001). Electrical classification of the concentration of bioconjugated metal colloids after surface adsorption and silver enhancement. Langmuir 17, 5426–5430.

    Google Scholar 

  8. S. J. Park, T. A. Taton, and C. A. Mirkin (2002). Array-based electrical detection of DNA with nanoparticle probes. Science 295, 1503–1506.

    Article  CAS  PubMed  Google Scholar 

  9. G.-J. Zhang, R. Möller, A. Csaki, and W. Fritzsche (2002). in W. Fritzsche (Ed.), AIP Conference Proceedings on DNA Based Molecular Construction. Jena, Germany, Vol. 640, pp. 13–21.

    Google Scholar 

  10. N. Zammatteo, L. Jeanmart, S. Hamels, S. Courtois, P. Louette, L. Hevesi, and J. Remacle (2000). Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays. Anal. Biochem. 280, 143–150.

    CAS  PubMed  Google Scholar 

  11. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger. (1998). One pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120, 1959–1964.

    CAS  Google Scholar 

  12. A. Csaki, R. Möller, W. Straube, J. M. Köhler, and W. Fritzsche (2001). DNA monolayer on gold substrates characterized by nanoparticle labeling and scanning force microscopy. Nucleic Acids Res. 29, e81.

    CAS  PubMed  Google Scholar 

  13. H. Cai, Y. Wang, P. He, and Y. Fang (2002). Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Anal. Chim. Acta 469, 165–172.

    CAS  Google Scholar 

  14. J. B. Lamture, K. L. Beattie, B. E. Burke, M. D. Eggers, D. J. Ehrlich, R. Fowler, M. A. Hollis, B. B. Kosicki, R. K. Reich, S. R. Smith, R. S. Varma, and M. E. Hogan (1994). Direct detection of nucleic acid hybridization on the surface of a charge coupled device. Nucleic Acids Res. 22, 2121–2125.

    CAS  PubMed  Google Scholar 

  15. Z. Guo, R. A. Guilfoyle, A. J. Thiel, R. Wang, and L. M. Smith (1994). Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res. 22, 5456–5465.

    CAS  PubMed  Google Scholar 

  16. R. Wirtz, C. Wälti, W. A. Germishuizen, M. Pepper, A. P. J. Middelberg, and A. G. Davies (2003). High-sensitivity colorimetric detection of DNA hybridzation on a gold surface with high spatial resolution. Nanotechnology 14, 7–10.

    CAS  Google Scholar 

  17. G. W. Hacker, G. Danscher, G. Bernatzky, W. Muss, H. Adam, and J. Thurner (1988). Silver acetate autometallography: An alternative enhancement technique for immunogold-silver staining (IGSS) and silver amplification of gold, silver, mercury and zinc in tissues. J. Histotechnol. 11, 213–221.

    CAS  Google Scholar 

  18. W. Fritzsche, A. Csaki, and R. Möller (2002). Nanoparticle-based optical detection of molecular interactions for DNA-chip technology. SPIE 4626, 17–22.

    CAS  Google Scholar 

  19. F. Diehl, S. Grahlmann, M. Beier, and J. D. Hoheisel (2001). Manufacturing DNA microarrays of high spot homogeneity and reduced background signal. Nucleic Acids Res. 29, e38.

    CAS  PubMed  Google Scholar 

  20. Y. H. Yang, M. J. Buckley, and T. P. Speed (2001). Analysis of cDNA microarray images. Brief Bioinform. 2, 341–349.

    CAS  PubMed  Google Scholar 

  21. C. Kooperberg, T. G. Fazzio, J. J. Delrow, and T. Tsukiyama (2002). Improved background correction for spotted DNA microarrays. J. Comput. Biol. 9, 55–66.

    CAS  PubMed  Google Scholar 

  22. T. L. Fare, E. M. Coffey, H. Dai, Y. D. He, D. A. Kessler, K. A. Kilian, J. E. Koch, E. LeProust, M. J. Marton, M. R. Meyer, et al. (2003). Effects of atmospheric ozone on microarray data quality. Anal. Chem. 75, 4672–7675.

    CAS  PubMed  Google Scholar 

  23. S. Taylor, S. Smith, B. Windle, and A. Guiseppi-Elie (2003). Impact of surface chemistry and blocking strategies on DNA microarrays. Nucleic Acids Res. 31, e87.

    PubMed  Google Scholar 

  24. J. J. Cras, C. A. Rowe-Taitt, D. A. Nivens, and F. S. Ligler (1999). Comparison of chemical cleaning methods of glass in preparation for silanization. Biosens. Bioelectr. 14, 683–688.

    CAS  Google Scholar 

  25. J. Li, H. Wang, Y. Zhao, L. Chen, N. He, and Z. Lu (2001). Assembly method fabricating linkers for covalently bonding DNA on glass surface. Sensors 1, 53–59.

    CAS  Google Scholar 

  26. G. Jogikalmath (2002) in H. Group (Ed.). Available from http://afm1.pharm.utah.edu/BELCourse/BELSurfSilanPattern.html.

  27. P. L. Dolan, Y. Wu, L. K. Ista, R. L. Metzenberg, M. A. Nelson, and G. P. Lopez (2001). Robust and efficient synthetic method for forming DNA microarrays. Nucleic Acids Res. 29, e107.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Möller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Festag, G., Steinbrück, A., Wolff, A. et al. Optimization of Gold Nanoparticle-Based DNA Detection for Microarrays. J Fluoresc 15, 161–170 (2005). https://doi.org/10.1007/s10895-005-2524-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2524-4

Keywords

Navigation