Skip to main content
Log in

Laurdan in Fluid Bilayers: Position and Structural Sensitivity

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Laurdan (2-dimethylamino-6-lauroylnaphthalene) is a hydrophobic fluorescent probe widely used in lipid systems. This probe was shown to be highly sensitive to lipid phases, and this sensitivity related to the probe microenvironment polarity and viscosity. In the present study, Laurdan was incorporated in 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG), which has a phase transition around 41°C, and DLPC (1,2-dilauroyl-sn-glycero-3-phosphocholine), which is in the fluid phase at all temperatures studied. The temperature dependence of Laurdan fluorescent emission was analyzed via the decomposition into two gaussian bands, a short- and a long-wavelength band, corresponding to a non-relaxed and a water-relaxed excited state, respectively. As expected, Laurdan fluorescence is highly sensitive to DPPG gel–fluid transition. However, it is shown that Laurdan fluorescence, in DLPC, is also dependent on the temperature, though the bilayer phase does not change. This is in contrast to the rather similar fluorescent emission obtained for the analogous hydrophilic probe, Prodan (2-dimethylamino-6-propionylnaphthalene), when free in aqueous solution, over the same range of temperature. Therefore, Laurdan fluorescence seems to be highly dependent on the lipid bilayer packing, even for fluid membranes. This is supported by Laurdan fluorescence anisotropy and spin labels incorporated at different positions in the fluid lipid bilayer of DLPC. The latter were used both as structural probes for bilayer packing, and as Laurdan fluorescence quenchers. The results confirm the high sensitivity of Laurdan fluorescence emission to membrane packing, and indicate a rather shallow position for Laurdan in the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others


  1. G. Weber and F. J. Farris (1979). Synthesis and spectral properties of hydrofobic fluorescent probe: 6-Propionyl-2-(dimethylamino)naphthlene. Biochemistry 18, 3075–3078.

    Article  PubMed  CAS  Google Scholar 

  2. L. A. Bagatolli, E. Gratton, and G. D. Fidelio (1998). Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence, Biophys. J. 75, 331–341.

    PubMed  CAS  Google Scholar 

  3. D. Zubiri, A. Domecq and D. L. Bernik (1999). Phase behavior of phosphatidylglycerol bilayers as a function of buffer composition: Fluorescence studies using Laurdan probe, Coll. Surf. B Biointer. 13, 13–28.

    Article  CAS  Google Scholar 

  4. L. A. Bagatolli, T. Parasassi, G. D. Fidelio, and E. Gratton (1999). A model for the interaction of 6-Lauroyl-2-(N, N-dimethylamino)naphthalene with lipid environments: Implications for spectral properties, Photochem. Photobiol. 70(4), 4.

    Article  Google Scholar 

  5. L. A. Bagatolli and E. Gratton (1999). Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles, Biophys. J. 77, 2090–2101.

    Article  PubMed  CAS  Google Scholar 

  6. S. Vanounou, D. Pines, E. Pines, A. H. Parola and I. Fishov (2002). Coexistence of domains with distinct order and polarity in fluid bacterial membranes, Photochem. Photobiol. 76(1), 1–11.

    Article  PubMed  CAS  Google Scholar 

  7. T. Parasassi, G. Stasio, G. Ravagnan, R. M. Rusch, and E. Gratton (1991). Quantization of lipids phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence, Biophys. J. 60, 179–189.

    PubMed  CAS  Google Scholar 

  8. T. Parasassi, E. K. Krasnowska, L. Bagatolli, and E. Gratton (1998). LAURDAN and PRODAN as polarity-sensitive fluorescent membrane probes, J. Fluorescence 8, 365–373.

    Article  CAS  Google Scholar 

  9. R. M. Epand and R. Kraayenhof (1999). Fluorescent probes used to monitor membranes interfacial polarity, Chem. Phys. Lipids 101, 57–64.

    Article  PubMed  CAS  Google Scholar 

  10. R. B. Campbell, S. V. Balsubramanian, and R. M. Straubinger (2001). Phospholipd–cationic lipid interactions: Influences on membrane and vesicles properties, Biochim. Biophys. Acta 1512, 27–39.

    Article  PubMed  CAS  Google Scholar 

  11. T. Söderlund, J. M. I. Alakoskela, A. L. Pakkanen, and P. K. J. Kinnunen (2003). Comparison of the effects of surface tension and osmotic pressure on the interfacial hydration of a fluid phospholipid bilayer, Biophys. J. 85, 2333–2341.

    PubMed  Google Scholar 

  12. J. R. Lakowicz (1999) Principles of Fluorescence Spectroscopy, 2nd ed. Kluwer Academic/Plenum Press, New York, pp. 185–289.

    Google Scholar 

  13. M. Viard, J. Gallay, M. Vincent, O. Meyer, B. Robert and M. Paternostre (1997). Laurdan solvatochromism: Solvent dielectric relaxation and intramolecular excited-state reaction, Biophys. J. 73, 2221–2234.

    PubMed  CAS  Google Scholar 

  14. D. Marsh (1990) CRC Handbook of Lipids Bilayers. CRC Press, Boca Raton, Florida, pp. 219.

    Google Scholar 

  15. O. H. Griffith and P. C. Jost (1976) Lipids spin labels in biological membranes. In: L. J. Berliner (Ed.), Spin Labelling. Theory and Applications. Academic Press, New York, p. 453.

    Google Scholar 

  16. B. J. Gaffney (1976) Practical considerations for the calculations of order parameters for fatty acid or phospholipid spin labels in membranes. In: L. J. Berliner (Ed.), Spin Labelling. Theory and Applications. Academic Press, New York, p. 567.

    Google Scholar 

  17. W. L. Hubbell, and H. M. McConnell (1971). Molecular motion in spin-labeled phospholipids and membranes, J. Am. Chem. Soc. 93, 314–326.

    Article  PubMed  CAS  Google Scholar 

  18. M. Viard, J. Gallay, M. Vincent and M. Paternostre (2001). Origin of Laurdan sensitivity to the vesicle-to micelle transition of phospholipids–octylglucoside system: A time-resolved fluorescent study, Biophys. J. 80, 347–359.

    PubMed  CAS  Google Scholar 

  19. D. Marsh (1981). Electron spin resonance: Spin labels. In: E. Grell (Ed.), Membrane Spectroscopy. Springer, Berlin, pp. 51–142.

    Google Scholar 

  20. C. R. Benatti, E. Feitosa, R. M. Fernandez and M. T. Lamy-Freund (2001). Structural and thermal characterization of dioctadecyldimethylammonium bromide dispersions by spin labels, Chem. Phys. Lipids 111, 93–104.

    Article  PubMed  CAS  Google Scholar 

  21. C. R. Benatti, J. M. Ruysschaert. and M. T. Lamy (2004). Structural characterization of diC14-amidine, a pH sensitive lipid used for transfection, Chem. Phys. Lipids 131, 197–204.

    Article  PubMed  CAS  Google Scholar 

  22. R. M. Fernadez and M. T. Lamy-Freund (2000). Correlation between the effects of a cationic peptide on the hydration and fluidity of anionic lipid bilayers: A comparative study with sodium ions and cholesterol, Biophys. Chem. 87, 87–102.

    Article  Google Scholar 

  23. H. Schindler and J. Seelig (1973). EPR-spectra of spin labels in lipid bilayers, J. Chem. Phys. 59(4), 4.

    Article  Google Scholar 

  24. O. H. Griffith, P. J. Dehlinger and S. P. Van (1974). Shape of hydrophobic barrier of phospholipid bilayers (evidence for water penetration in biological membranes), J. Membrane Biol. 15, 159–192.

    Article  CAS  Google Scholar 

Download references


This work was supported by USP, FAPESP and CNPq. Fellowships for C.C.V.S. (FAPESP), C.R.B. (FAPESP) and M.T.L. (CNPq) are acknowledged.

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. Teresa Lamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Vequi-Suplicy, C.C., Benatti, C.R. & Lamy, M.T. Laurdan in Fluid Bilayers: Position and Structural Sensitivity. J Fluoresc 16, 431–439 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: