Skip to main content
Log in

Influence of Chemical Environment on the Optical Properties in Transition Metal Ions Doped Materials

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

The sensibility of luminescent properties in transition metal doped materials to the matrices' chemical environment is explained in this paper, this is because of their strong phonon-electron coupling which are caused by the 3d electrons exposed nature. The influence of the chemical environments on the Mn2+-doped materials' optical properties, including the structure type of coordinate polyhedron, the polyhedral bridge linking manner and the lattice parameter, was illustrated in detail in this work. The impact of crystal field strength parameter (10 Dq) on the maximum energy differentiae in spontaneous emission band of Cr3+:4T2g4A2g and in excited state absorption band 4T2g4T1g (4F), and covalent bond intension's impact on the optical properties of Os4+ were also analyzed. This work's purpose is to discover the principle of the sensibility character, then we can use it to optimal the design of materials in order to find the excellent luminescent materials for practical utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Z. L. Fang (1992). Semiconductor Luminescent Materials and its' Apparatus, Fudan University Press, Shanghai, China, pp. 275–297 (in Chinese).

  2. X. E. Yu (1997). Practicality Luminescent Materials and Optronics Mechanism, China Light Industry Press, Beijing, pp. 6–33 (in Chinese).

    Google Scholar 

  3. Z. G. Xiao (2002). Light Deposit Materials and its' Production [M], China Light Industry Press, Beijing, pp. 191–208 (in Chinese).

    Google Scholar 

  4. J. Y. Sun, H. L. Du, and W. X. Hu (2003). Solid State Luminescent Materials, Environment Science and Engineering Print Centre of Chemical Industry Press, Beijing, pp. 14–18 (in Chinese).

  5. J. Y. Li (2003). Rare Earth Doped Luminescent Materials and its' Application, Materials Science and Engineering Print Centre of Chemical Industry Press, Beijing, pp. 14–16 (in Chinese).

  6. L. W. Yang, Z. W. Liu, and S. G. Xiao (2002). Nat. Sci. J. Xiangtan Univ. 24(4), 29 (in Chinese).

    Google Scholar 

  7. F. Su, Z. Deng, and Z. Jiang (2005). J. Funct. Mater. 36(5), 655–657 (in Chinese).

    CAS  Google Scholar 

  8. Z. Yang, S. Xu, L. Hu, et al. (2004). J. Alloys Compd. 370, 94–98.

    Article  CAS  Google Scholar 

  9. G. M. Salley, O. S. Wenger, K. W. Kramer, et al. (2002). Curr. Opin. Solid State Mater. Sci. 6, 487–493.

    Article  CAS  Google Scholar 

  10. O. S. Wenger, M. Wemuth, and H. U. Gudel (2002). J. Alloys Compd. 341, 342–348.

    Article  CAS  Google Scholar 

  11. R. Valience, O. S. Wenger, and H. U. Gudel (2000). Chem. Phys. Lett. 320, 639–644.

    Article  Google Scholar 

  12. C. Reinhard, P. Gerner, R. Valiente, et al. (2001). J. Lumin. 94/95, 331–335.

    Article  Google Scholar 

  13. P. Gerner, O. S. Wenger, R. Valiente, et al. (2001). Inorg. Chem. 40, 4524–4542.

    Article  CAS  Google Scholar 

  14. M. Diaz, L. R. Cases, et al. (1999). J. Lumin. 81, 53–60.

    Article  CAS  Google Scholar 

  15. O. S. Wenger and H. U. Gudel (2001). J. Chem. Phys. 114, 5832–5841.

    Article  CAS  Google Scholar 

  16. J. X. Zhang (2001). Optoelectronics, South China University of Technology Press, Guangzhou, China, p. 177.

    Google Scholar 

  17. O. S. Wenger and H. U. Gudel (2002). Chem. Phys. 117(2), 909–913.

    Article  CAS  Google Scholar 

  18. H. W. H. Lee, S. A. Payne, and L. L. Chase (1989). Phys. Rev. B 39, 8907–8914.

    Article  CAS  Google Scholar 

  19. R. Moncorge and T. Benyalton (1988). Phys. Rev. B 37, 5229–5238.

    Google Scholar 

  20. S. Heer, M. Wermuth, K. Kramer, et al. (2002). Phys. Rev. B 65, 125112–125121.

    Article  CAS  Google Scholar 

  21. S. Heer, M. Wermuth, K. Kramer, et al. (2001). J. Lumin. 95/96, 337–341.

    Article  Google Scholar 

  22. M. Wermuth and H. U. Gudel (2000). J. Lumin. 8789, 1014–1016.

    Article  Google Scholar 

  23. M. Wermuth and H. U. Gudel (2001). Chem. Phys. 114(3), 1393–1404.

    Article  CAS  Google Scholar 

  24. M. Wermuth and H. U. Gudel (1999). J. Am. Chem. Soc. 121(43), 10102–10111.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation of China (Grant No. 60307004 and 50472053), Natural Foundation of Guangdong Province, PR China (Grant No. 04200036), Science and Technology Program of Guang Zhou, Guang-dong province, PR China (Grant No. 2004Z2-D0131 and 2004A10602002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Ning Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, FN., Deng, Z. Influence of Chemical Environment on the Optical Properties in Transition Metal Ions Doped Materials. J Fluoresc 16, 43–46 (2006). https://doi.org/10.1007/s10895-005-0031-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0031-2

KEY WORDS:

Navigation