Skip to main content

Advertisement

Log in

Confocal Fluorescence Recovery After Photobleaching of Green Fluorescent Protein in Solution

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Fluorescence recovery after photobleaching (FRAP) is one of the most widely used approaches to quantitatively estimate diffusion characteristics of molecules in solution and cellular systems. In general, comparison of the diffusion times (t 1/2) from a FRAP experiment provides qualitative estimates of diffusion rates. However, obtaining consistent and reliable quantitative estimates of mobility of molecules using FRAP is hindered by the lack of appropriate standards for calibrating the FRAP set-up (microscope configuration and data fitting algorithms) used in a given experiment. In comparison with other fluorescent markers, the green fluorescent proteins (GFP) possess characteristics that are ideal for use in such experiments. We have monitored the mobility of pure enhanced green fluorescent protein (EGFP) in a viscous solution by confocal FRAP experiments. Our experimentally determined diffusion coefficient of EGFP in a glycerol–water mixture is in excellent agreement with the value predicted for GFP in a solution of comparable viscosity, calculated using the Stokes–Einstein equation. The agreement in the experimentally determined diffusion coefficient and that predicted from theoretical framework improves significantly when one takes into account the effective size of the bleached spot in such experiments. Our results therefore validate the use of GFP as a convenient standard for FRAP experiments. Importantly, we present a simple method to correct for artifacts in the accurate determination of diffusion coefficient of molecules measured using FRAP arising due to the underestimation in the effective size of the bleached spot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. O. Petersen, S. Felder, and E. L. Elson (1986). In D. M. Weir, L. A. Herzenberg, C. C. Blackwell, and L. A. Herzenberg (Ed.) Measurement of Lateral Diffusion by Fluorescence Photobleaching Recovery, Blackwell Scientific Publications, Edinburgh, pp. 24.1–24.23.

  2. D. E. Wolf (1989). In D. L. Taylor, and Y.-L. Wang (Eds.) Designing, Building, and Using a Fluorescence Recovery After Photobleaching Instrument, Academic Press, New York, pp. 271–306.

  3. M. Edidin (1994). In S. Damjanovich, M. Edidin, J. Szollosi, and L. Tron (Eds.) Fluorescence Photobleaching and Recovery, FPR, in the Analysis of Membrane Structure and Dynamics, CRC Press, Boca Raton, Florida, pp. 109–135.

  4. G. M. Lee and K. Jacobson (1994). In A. Kleinzeller and D. M. Fambrough (Eds.) Lateral Mobility of Lipids in Membranes, Academic Press, New York, pp. 111–142.

  5. J. Lippincott-Schwartz, E. Snapp, and A. Kenworthy (2001). Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2, 444–456.

    Article  PubMed  CAS  Google Scholar 

  6. M. Weiss and T. Nilsson (2004). In a mirror dimly: Tracing the movements of molecules in living cells. Trends Cell Biol. 14, 267–273.

    Article  PubMed  CAS  Google Scholar 

  7. R. Y. Tsien (1998). The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.

    Article  PubMed  CAS  Google Scholar 

  8. J. C. G. Blonk, A. Don, H. Van Aalst, and J. J. Birmingham (1993). Fluorescence photobleaching recovery in the confocal scanning light microscope. J. Microsc. 169, 363–374.

    CAS  Google Scholar 

  9. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, W. W. Webb (1976). Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069.

    PubMed  CAS  Google Scholar 

  10. N. L. Thompson and D. Axelrod (1980). Reduced lateral mobility of a fluorescent lipid probe in cholesterol-depleted erythrocyte membrane. Biochim. Biophys. Acta 597, 155–165.

    Article  PubMed  CAS  Google Scholar 

  11. L. Kallal and J. L. Benovic (2000). Using green fluorescent proteins to study G-protein-coupled receptor localization and trafficking. Trends Pharmacol. Sci. 21, 175–180.

    Article  PubMed  CAS  Google Scholar 

  12. T. J. Pucadyil, S. Kalipatnapu, K. G. Harikumar, N. Rangaraj, S. S. Karnik, and A. Chattopadhyay (2004). G-protein-dependent cell surface dynamics of the human serotonin1A receptor tagged to yellow fluorescent protein. Biochemistry 43, 15852–15862.

    Article  PubMed  CAS  Google Scholar 

  13. T. J. Pucadyil, S. Kalipatnapu, and A. Chattopadhyay (2005). Membrane organization and dynamics of the G-protein coupled serotonin1A receptor monitored using fluorescence-based approaches, J. Fluoresc, in press.

  14. R. Heim and R. Y. Tsien (1996). Engineering green fluorescent proteins for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182.

    Article  PubMed  CAS  Google Scholar 

  15. G. H. Patterson, S. M. Knobel, W. D. Sharif, S. R. Kain, and D. W. Piston (1997). Use of green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790.

    PubMed  CAS  Google Scholar 

  16. R. Swaminathan, C. P. Hoang, and A. S. Verkman (1997). Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion, Biophys. J. 72, 1900–1907

    Article  PubMed  CAS  Google Scholar 

  17. M. Ormö, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, and S. J. Remington (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395.

    Article  PubMed  Google Scholar 

  18. U. Kubitscheck, O. Kückman, T. Kues, and R. Peters (2000). Imaging and tracking of single GFP molecules in solution. Biophys. J. 78, 2170–2179.

    PubMed  CAS  Google Scholar 

  19. P. F. F. Almeida and W. L. C. Vaz (1995). In R. Lipowsky and E. Sackmann (Eds.) Lateral Diffusion in Membranes, Elsevier Science, Amsterdam, pp. 305–357.

  20. T.-T. Yang, L. Cheng, and S. R. Kain (1996). Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res. 24, 4592–4593.

    Article  PubMed  CAS  Google Scholar 

  21. D. M. Soumpasis (1983). Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys. J. 41, 95–97.

    PubMed  CAS  Google Scholar 

  22. N. Klonis, M. Rug, I. Harper, M. Wickham, A. Cowman, and L. Tilley (2002). Fluorescence photobleaching analysis for the study of cellular dynamics. Eur. Biophys. J. 31, 36–51.

    Article  PubMed  CAS  Google Scholar 

  23. M. Weiss (2004). Challenges and artifacts in quantitative photobleaching experiments, Traffic 5, 662–671.

    Article  PubMed  CAS  Google Scholar 

  24. J. Braga, J. M. P. Desterro, and M. Carmo-Fonseca (2004). Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser microscopes. Mol. Biol. Cell 15, 4749–4760.

    Article  PubMed  CAS  Google Scholar 

  25. D. Sinnecker, P. Voigt, N. Hellwig, and M. Schaefer (2005). Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44, 7085–7094.

    Article  PubMed  CAS  Google Scholar 

  26. A. Lopez, L. Dupou, A. Altibelli, J. Trotard, and J. F. Tocanne (1988). Fluorescence recovery after photobleaching (FRAP) experiments under conditions of uniform disk illumination. Critical comparison of analytical solutions, and a new mathematical method for calculation of diffusion coefficient D. Biophys. J. 53, 963–970.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Council of Scientific and Industrial Research, Government of India. T.J.P. thanks the Council of Scientific and Industrial Research for the award of a Senior Research Fellowship. A.C. is an Honorary Faculty Member of the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore (India). We sincerely thank Prof. G. Krishnamoorthy (Tata Institute for Fundamental Research, Mumbai, India) for the kind gift of purified EGFP. We thank Nandini Rangaraj, V.K. Sarma, N.R. Chakravarthi and K.N. Rao for technical help during confocal microscopy. We thank members of our laboratory for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pucadyil, T.J., Chattopadhyay, A. Confocal Fluorescence Recovery After Photobleaching of Green Fluorescent Protein in Solution. J Fluoresc 16, 87–94 (2006). https://doi.org/10.1007/s10895-005-0019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0019-y

KEY WORDS:

Navigation