Skip to main content
Log in

Plastic Versus Glass Support for an Immunoassay on Metal-Coated Surfaces in Optically Dense Samples Utilizing Directional Surface Plasmon-Coupled Emission

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

We compared plastic (polycarbonate) and high-quality glass support materials for gold-coated slides, when performing a model immunoassay against rabbit IgG using fluorescently labeled (AlexaFluor-647) anti-rabbit IgG, and detecting surface plasmon-coupled emission (SPCE) signals. Both, glass and plastic slides were simultaneously coated with a 48-nm layer of gold and protected with a 10-nm layer of silica. The maximum SPCE signal of AlexaFluor-647 was only two- to three-fold smaller on plastic slides than on glass slides. A small difference in the SPCE angles on glass (θ F = 55°) and plastic (θ F = 52.5°) slides was observed and can be explained with a slightly smaller refractive index of the plastic. We have not found any difference in the angle distribution (sharpness of the fluorescence signal at optimal SPCE angle) for the plastic slide compared to the glass slide. The kinetics of binding was monitored on the plastic slide as well as on the glass slide. Optically dense samples, a 4% red blood cell suspension and a 15% hemoglobin solution, are causing a reduction in the immunoassay SPCE signal by approximately 15% and three times, respectively, and the percentage of the reduction is the same for plastic and for glass slides. We believe that plastic substrates can be readily used in any SPCE assay, with only marginally lower total signal compared to high-quality glass slides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

Ab:

Antibody

Hb:

Hemoglobin

IgG:

Immunoglobulin G

KR:

Kretschmann configuration

RBC:

Red blood cell

SPCE:

Surface plasmon-coupled emission

SPR:

Surface plasmon resonance

REFERENCES

  1. L. J. Kricka and P. Fortina (2002). Microchips: An all-language literature survey including books and patents. Clin. Chem. 48, 1620–1622.

    PubMed  CAS  Google Scholar 

  2. L. J. Kricka, P. Fortina, N. J. Panaro, P. Wilding, G. Alonso-Amigo, and H. Becker (2002). Fabrication of plastic microchips by hot embossing. Lab on a Chip 2(1), 1–4.

    Article  PubMed  CAS  Google Scholar 

  3. P. Mitchell (2001). Microfluidics—downsizing large-scale biology. Nat. Biotechnol. 19, 717–721.

    Article  PubMed  CAS  Google Scholar 

  4. A. J. Ricco, T. D. Boone, Z. H. Fan, I. Gibbons, T. Matray, S. Singh, H. Tan, T. Tian, and S. J. Williams (2001). Application of disposable plastic microfluidic device arrays with customized chemistries to multiplexed biochemical assays. Biochem. Soc. Trans. 30, 73–78.

    Article  Google Scholar 

  5. A. Gerlach, G. Knebel, A. E. Guber, M. Heckele, D. Herrmann, A. Muslija, and T. H. Schaller (2002). Microfabrication of single-use plastic microfluidic devices for high-throughput screening and DNA analysis. Microsyst. Technol. 7(5–6), 265–268.

    Article  Google Scholar 

  6. A. P. Sudarsan and V. M. Ugaz (2004). Printed circuit technology for fabrication of plastic-based microfluidic devices. Anal. Chem. 76(11), 3229–3235.

    Article  PubMed  CAS  Google Scholar 

  7. Y. Liu, D. Ganser, A. Schneider, R. Liu, P. Grodzinski, and N. Kroutchinina (2001). Microfabricated polycarbonate CE devices for DNA analysis. Anal. Chem. 73(17), 4196–4201.

    Article  PubMed  CAS  Google Scholar 

  8. E. Delamarche, A. Bernard, H. Schmid, B. Michel, and H. Biebuyck (1997). Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276 (5313), 779–781.

    Article  PubMed  CAS  Google Scholar 

  9. W. G. Wood and A. Gadow (1983). Immobilisation of antibodies and antigens on macro solid phases—A comparison between adsorptive and covalent binding. A critical study of macro solid phases for use in immunoassay systems. Part I. J. Clin. Chem. Clin. Biochem. 21(12), 789–797.

    PubMed  CAS  Google Scholar 

  10. K. E. Magnusson, E. Bartonek, E. Nordkvist, T. Sundqvist, and E. Asbrink (1987). Fluorescence-linked immunosorbent assay (FLISA) for quantification of antibodies to food antigens. Immunol. Invest. 16(3), 227–240.

    Article  PubMed  CAS  Google Scholar 

  11. S. Y. Tetin and S. D. Stroupe (2004). Antibodies in diagnostic applications. Curr. Pharm. Biotechnol. 5, 9–16.

    Article  PubMed  CAS  Google Scholar 

  12. P. B. Luppa, L. J. Sokoll, and D. W. Chan (2001). Immunosensors—Principles and applications to clinical chemistry. Clin. Chim. Acta 314, 1–26.

    Article  PubMed  CAS  Google Scholar 

  13. C. A. Borrebaeck (2000). Antibodies in diagnostics—From immunoassays to protein chips. Immunol. Today 21, 379–382.

    Article  PubMed  CAS  Google Scholar 

  14. T. Vo-Dinh, M. J. Sepaniak, G. D. Griffin, and J. P. Alarie (1993). Immunosensors: Principles and applications. Immunomethods 3, 85–92.

    Article  CAS  Google Scholar 

  15. I. A. Hemmila (1992). Applications of Fluorescence in Immunoassays. John Wiley & Sons, New York.

  16. A. Gomez-Hens and M. P. Aguilar-Caballos (2003). Stopped-flow fluorescence polarization immunoassay. Comb. Chem. High Throughput Screen. 6, 177–182.

    PubMed  CAS  Google Scholar 

  17. T. Lövgren and K. Pettersson (1990). Time-resolved fluoroimmunoassay, advantages and limitations. in K. Van Dyke and R. Van Dyke (Eds.), Luminescence Immunoassay and Molecular Applications, CRC Press, Boca Raton, FL, pp. 233–253.

    Google Scholar 

  18. G. Mathis (1993). Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin. Chem. 39, 1953–1959.

    PubMed  CAS  Google Scholar 

  19. P. von Lode, J. Rosenberg, K. Pettersson, and H. Takalo (2003). A europium chelate for quantitative point-of-care immunoassays using direct surface measurement. Anal. Chem. 75, 3193–3201.

    Article  PubMed  CAS  Google Scholar 

  20. G. A. Baker, S. Pandey, and F. V. Bright (2000). Extending the reach of immunoassays to optically dense specimens by using two-photon excited fluorescence polarization. Anal. Chem. 72, 5748–5752.

    Article  PubMed  CAS  Google Scholar 

  21. E. Soini, N. J. Meltola, A. E. Soini, J. Soukka, J. T. Soini, and P. E. Hanninen (2000). Two-photon fluorescence excitation in detection of biomolecules. Biochem. Soc. Trans. 28, 70–74.

    PubMed  CAS  Google Scholar 

  22. S. Choi, E. Y. Choi, D. J. Kim, J. H. Kim, T. S. Kim, and S. W. Oh (2004). A rapid, simple measurement of human albumin in whole blood using a fluorescence immunoassay. Clin. Chim. Acta 339, 147–156.

    Article  PubMed  CAS  Google Scholar 

  23. P. von Lode, J. Rainaho, and K. Pettersson (2004). Quantitative, wide-range, 5-minute point-of-care immunoassay for total human chorionic gonadotropin in whole blood. Clin. Chem. 50, 1026–1035.

    Article  PubMed  CAS  Google Scholar 

  24. J. S. Ahn, S. Choi, S. H. Jang, H. J. Chang, J. H. Kim, K. B. Nahm, S. W. Oh, and E. Y. Choi (2003). Development of a point-of-care assay system for high-sensitivity C-reactive protein in whole blood. Clin. Chim. Acta 332, 51–59.

    Article  PubMed  CAS  Google Scholar 

  25. P. Tarkkinen, T. Palenius, and T. Lövgren (2002). Ultrarapid, ultrasensitive one-step kinetic immunoassay for C-reactive protein (CRP) in whole blood samples: Measurement of the entire CRP concentration range with a single sample dilution. Clin. Chem. 48, 269–277.

    PubMed  CAS  Google Scholar 

  26. J. R. Lakowicz (2004). Radiative decay engineering 3. Surface plasmon-coupled directional emission. Anal. Biochem. 324, 153–169.

    Article  PubMed  CAS  Google Scholar 

  27. T. Liebermann and W. Knoll (2000). Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids Surf. A 171, 115–130.

    Article  CAS  Google Scholar 

  28. N. Calander (2004). Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures. Anal. Chem. 76(8), 2168–2173.

    Article  PubMed  CAS  Google Scholar 

  29. K. Vasilev, W. Knoll, and M. Kreiter (2004). Fluorescence intensities of chromophores in front of a thin metal film. J. Chem. Phys. 120(7), 3439–3445.

    Article  PubMed  CAS  Google Scholar 

  30. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz (2004). Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Anal. Biochem. 324, 170–182.

    Article  PubMed  CAS  Google Scholar 

  31. S. Ekgasit, F. Yu, and W. Knoll (2005). Displacement of molecules near a metal surface as seen by an SPR-SPFS biosensor. Langmuir 21(9), 4077–4082.

    Article  PubMed  CAS  Google Scholar 

  32. N. Calander (2005). Surface plasmon-coupled emission and Fabry-Perot resonance in the sample layer: A theoretical approach. J. Phys. Chem. B 109(29), 13957–13963.

    Article  PubMed  CAS  Google Scholar 

  33. B. Campbell, J. Lei, D. Kiaei, D. Sustarsic, and S. el Shami (2004). Nucleic acid testing using surface plasmon resonance fluorescence detection. Clin. Chem. 50(10), 1942–1943.

    Article  PubMed  CAS  Google Scholar 

  34. E. Matveeva, Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz (2004). Immunoassays based on directional surface plasmon-coupled emission. J. Immunol. Methods 286, 133–140.

    Article  PubMed  CAS  Google Scholar 

  35. E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz (2004). Multi-wavelength immunoassays using surface plasmon-coupled emission. Biochem. Biophys. Res. Commun. 313, 721–726.

    Article  PubMed  CAS  Google Scholar 

  36. E. Matveeva, Z. Gryczynski, I. Gryczynski, J. Malicka, and J. R. Lakowicz (2004). Myoglobin immunoassay utilizing directional surface plasmon-coupled emission. Anal. Chem. 76, 6287–6292.

    Article  PubMed  CAS  Google Scholar 

  37. D. Yao, F. Yu, J. Kim, J. Scholz, P. E. Nielsen, E. K. Sinner, and W. Knoll (2004). Surface plasmon field-enhanced fluorescence spectroscopy in PCR product analysis by peptide nucleic acid probes. Nucleic Acids Res. 32(22), e177.

    Article  PubMed  CAS  Google Scholar 

  38. F. Yu, B. Persson, S. Lofas, and W. Knoll (2004). Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level. Anal. Chem. 76(22), 6765–6770.

    Article  PubMed  CAS  Google Scholar 

  39. R. Robelek, L. Niu, E. L. Schmid, and W. Knoll (2004). Multiplexed hybridization detection of quantum dot-conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and spectrometry. Anal. Chem. 76(20), 6160–6165.

    Article  PubMed  CAS  Google Scholar 

  40. F. Yu, B. Persson, S. Lofas, and W. Knoll (2004). Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy. J. Am. Chem. Soc. 126(29), 8902–8903.

    Article  PubMed  CAS  Google Scholar 

  41. G. Stengel and W. Knoll (2005). Surface plasmon field-enhanced fluorescence spectroscopy studies of primer extension reactions. Nucleic Acids Res. 33(7), e69.

    Article  PubMed  Google Scholar 

  42. M. M. Vareiro, J. Liu, W. Knoll, K. Zak, D. Williams, and A. T. Jenkins (2005). Surface plasmon fluorescence measurements of human chorionic gonadotrophin: Role of antibody orientation in obtaining enhanced sensitivity and limit of detection. Anal. Chem. 77(8), 2426–2431.

    Article  PubMed  CAS  Google Scholar 

  43. E. G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K. W. Berndt, J. R. Lakowicz, and I. Gryczynski (2005). Directional surface plasmon-coupled emission—Application for an immunoassay in whole blood. Anal.Biochem. 344(2), 161–167.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Center for Research Resource, RR-08119, Philip Morris USA Inc. and Philip Morris International, and Biomolecular Interaction Technology Center (BITC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgenia G. Matveeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matveeva, E.G., Gryczynski, I., Malicka, J. et al. Plastic Versus Glass Support for an Immunoassay on Metal-Coated Surfaces in Optically Dense Samples Utilizing Directional Surface Plasmon-Coupled Emission. J Fluoresc 15, 865–871 (2005). https://doi.org/10.1007/s10895-005-0015-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0015-2

KEY WORDS:

Navigation