Skip to main content
Log in

Epicocconone, A New Cell-Permeable Long Stokes' Shift Fluorescent Stain for Live Cell Imaging and Multiplexing

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Epicocconone is a heterocyclic natural product from the fungus Epicoccum nigrum that fluoresces weakly in the green (520 nm). However, cells exposed to epicocconone rapidly absorb the dye and become bright orange fluorescent because the natural product reacts reversibly with proteins. The orange fluorescence is enhanced in lipophilic environments, allowing the visualization of membranous organelles and lipid rafts but does not stain oligonucleotides. As the unconjugated dye has no orange fluorescence, there is no need to wash out the excess fluorophore. Epicocconone is a neutral, non-toxic, small molecule that appears to diffuse readily into live of fixed cells without the need for permeabilization. These features enable the real-time imaging of live cells and the study of organelle movements. Cells stained with epicocconone are excitable by common lasers (UV, 405, 488, and 532 nm) and its long Stokes' shift allows multiplexing applications with more common short Stokes' fluorophores using a single light source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. P. Haugland (2005). Handbook of a Guide to Fluorescent Probes and Labeling Technologies, 10th ed., Molecular Probes, Eugene, OR, USA.

    Google Scholar 

  2. D. B. Zorov, E. Kobrinsky, M. Juhaszova, and S. J. Sollott (2004). Examining intracellular organelle function using fluorescent probes from animalcules to quantum dots. Circ. Res. 95, 239–252.

    Article  PubMed  CAS  Google Scholar 

  3. M. A. Haidekker, T. Ling, M. Anglo, H. Y. Stevens, J. A. Frangos, and E. A. Theodorakis (2001). New fluorescent probes for the measurement of cell membrane viscosity. Chem. Biol. 8, 123–131.

    Article  PubMed  CAS  Google Scholar 

  4. M. H. Teiten, L. Bezdetnaya, P. Morlière, R. Santus, and F. Guillemin (2003). Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan® localisation in cultured tumour cells. Brit. J. Cancer 88, 146–152.

    Article  PubMed  Google Scholar 

  5. C. R. Parish (1999). Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol. Cell Biol. 77, 499–508.

    Article  PubMed  CAS  Google Scholar 

  6. A. Grützkau, S. Krüger-Krasagakes, H. Kögel, A. Möller, U. Lippert, and B. M. Henz (1997). Detection of intracellular interleukin-8 in human mast cells: Flow cytometry as a guide for immunoelectron microscopy. J. Histochem. Cytochem. 45, 935–946.

    PubMed  Google Scholar 

  7. A. J. Janecki, M. Janecki, S. Akhter, and M. Donowitz (2000). Quantitation of plasma membrane expression of a fusion protein of Na/H exchanger NHE3 and green fluorescence protein (GFP) in living PS120 fibroblasts. J. Histochem. Cytochem. 48, 1479–1492.

    PubMed  CAS  Google Scholar 

  8. G. Jedd and N-H. Chua (2002). Visualization of peroxisomes in living plant cells reveals acto-myosin-dependent cytoplasmic streaming and peroxisome budding. Plant Cell Physiol. 43, 384–392.

    Article  PubMed  CAS  Google Scholar 

  9. A. M. Derfus, W. C. W. Chan, and S. N. Bhatia (2004). Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18.

    Article  CAS  Google Scholar 

  10. D. S. Y. Yeo, R. Srinivasan, M. Uttamchandani, G. Y. J. Chen, Q. Zhu, and S. Q. Yao (2003). Cell-permeable small molecule probes for site-specific labeling of proteins. Chem. Commun. 23, 2870–2871.

    Article  Google Scholar 

  11. G. Gaietta, T. J. Deerinck, S. R. Adams, J. Bouwer, O. Tour, D. W. Laird, G. E. Sosinsky, R. Y. Tsien, and M. H. Ellisman (2002). Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507.

    Article  PubMed  CAS  Google Scholar 

  12. C. Bolte, C. Talbot, Y. Boutte, O. Catrice, N. D. Read, and B. Satiat-Jeunemaitre (2004). FM-dyes as experimental probes for dissecting vesicle trafficking in living plants. J. Microsc. 214, 159–173.

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  13. R. Srinivasan, S. Q. Yao, and D. S. Y. Yeo (2004). Chemical approaches for live cell bioimaging. Comb. Chem. High Throughput Screening 7, 597–604.

    CAS  Google Scholar 

  14. J. Fukuda, H. Ishimine, and Y. Masaki (2003). Long-term staining of live Merkel cells with FM dyes. Cell Tiss. Res. 311, 325–332.

    Google Scholar 

  15. B. Zanella, N. Calonghi, E. Pagnotta, L. Masotti, and C. Guarnieri (2002). Mitochondrial nitric oxide localization in H9c2 cells revealed by confocal microscopy. Biochem. Biophys. Res. Commun. 290, 1010–1014.

    Article  PubMed  CAS  Google Scholar 

  16. L. Kuerschner, C. S. Ejsing, K. Ekroos, A. Shevchenko, K. I. Anderson, and C. Thiele (2005). Polyene-lipids: A new tool to image lipids. Nat. Methods 2, 39–45.

    Article  PubMed  CAS  Google Scholar 

  17. D. A. Veal, P. Bell, H. Brown, H-Y. Choi, and P. Karuso (2003). Fluorophores from fungi. Microbiol. Aust. 24, 12–14.

    Google Scholar 

  18. P. J. L. Bell, D. Deere, J. Shen, B. Chapman, P. H. Bissinger, P. V. Attfield, and D. A. Veal (1998). A flow cytometric method for rapid selection of novel industrial yeast hybrids. Appl. Environ. Microbiol. 64, 1669–1672.

    PubMed  CAS  Google Scholar 

  19. B. C. Ferrari, P. V. Attfield, D. A. Veal, and P. J. Bell (2003). Application of the novel fluorescent dye Beljian red to the differentiation of Giardia cysts. J. Microbiol. Methods 52, 133–135.

    Article  PubMed  CAS  Google Scholar 

  20. P. J. L. Bell and P. H. Karuso (2003). Epicocconone, a novel fluorescent compound from the fungus Epicoccum nigrum. J. Am. Chem. Soc. 125, 9304–9305.

    Article  CAS  Google Scholar 

  21. D. R. Coghlan, J. A. Mackintosh, and P. Karuso (2005). Mechanism of reversible fluorescent staining of protein with epicocconone. Org. Lett. 7, 2401–2404.

    Article  PubMed  CAS  Google Scholar 

  22. R. Freshney (1987). Culture of Animal Cells: A Manual of Basic Techniques. Alan R. Liss, New York.

    Google Scholar 

  23. National Cancer Institute Therapeutics Development Program, NCI ID No. D734922/1; Compound ID. Epicocconone (35597); Test date Jan. 31 2005.

Download references

Acknowledgments

We thank to Ning Xu at Australian Proteomic Analysis Facility (Sydney, Australia) for providing HCT-116 (wild type), Daniel Bain, Jim Mackintosh and Dan Coghlan for assistance and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Karuso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, HY., Veal, D.A. & Karuso, P. Epicocconone, A New Cell-Permeable Long Stokes' Shift Fluorescent Stain for Live Cell Imaging and Multiplexing. J Fluoresc 16, 475–482 (2006). https://doi.org/10.1007/s10895-005-0010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0010-7

KEY WORDS

Navigation