Skip to main content
Log in

Assessment of the Impact of Magnetic Equilibria Designs on the Stationary Plasma Heat Flux Deposition onto the CFETR First Wall

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Quasi-snowflake-plus (QSF+) and the lower single null diverted (SND) magnetic equilibria have been proposed as the promising designs for the Chinese fusion engineering testing reactor (CFETR). The impact of these two candidate magnetic equilibria on the H-mode stationary plasma heat flux deposition onto the first wall has been assessed. Comparing the distributions of plasma heat flux on the CFETR first wall for QSF + and SND indicates that the SND is more beneficial for the engineering design of the first wall module, since the computational results prove that there is only one module of the first wall being recognized as the enhanced heat flux module (EHFM) in the case of SND. Meanwhile, due to the SND magnetic equilibrium is the baseline configuration used in the CFETR design work and \(\varDelta {R}_{\text{s}\text{e}\text{p}}\)is an important factor for plasma control system (PCS) during the tokamak operation, the impact of SND magnetic equilibria with a series of \(\varDelta {R}_{\text{s}\text{e}\text{p}}\) on the plasma heat flux deposition onto the first wall is further studied. Comparing the peak plasma heat flux on the CFETR first wall for SND with varying \(\varDelta {R}_{\text{s}\text{e}\text{p}}\) builds more confidences in using \(\varDelta {R}_{\text{s}\text{e}\text{p}}\)= 6 cm as the baseline SND equilibrium in the CFETR design work, where the plasma heat flux on the first wall is close to current engineering constraints of 1 MW/m2. With the baseline SND equilibrium design, the sensitivity of plasma heat flux to power decay length will not be a priority for the safety of the first wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/ or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y.X. Wan, J.G. Li, Y. Liu et al., Nucl. Fusion 57(10), 102009 (2017)

    Article  ADS  Google Scholar 

  2. G. Zhuang, G.Q. Li, J. Li et al., Nucl. Fusion 59(11), 112010 (2019)

    Article  ADS  Google Scholar 

  3. R. Wenninger, R. Albanese, R. Ambrosino et al., Nucl. Fusion 57(4), 046002 (2017)

    Article  ADS  Google Scholar 

  4. F. Nian, Z. Yang, R. Ding et al., Plasma Phys. Control Fusion 63(9), 095004 (2021)

    Article  ADS  Google Scholar 

  5. S. Liu, X. Li, X. Ma et al., Fusion Eng. Des. 146, 1716–1720 (2019)

    Article  ADS  Google Scholar 

  6. F. Maviglia, M. Siccinio, C. Bachmann et al., Nucl. Mater. Energy 26, 100897 (2021)

    Article  Google Scholar 

  7. K.C. Jiang, E. Martelli, P. Agostini et al., Fusion Eng. Des. 146, 2748–2756 (2019)

    Article  Google Scholar 

  8. R. Wenninger, R. Kembleton, C. Bachmann et al., Nucl. Fusion 57(1), 016011 (2017)

    Article  ADS  Google Scholar 

  9. J. Linke, J. Du, T. Loewenhoff et al., Matter and Radiation at Extremes 4(5), 056201 (2019)

    Article  Google Scholar 

  10. H. Li, G.Q. Li, X.J. Liu et al., Fusion Eng. Des. 152, 111447 (2020)

    Article  Google Scholar 

  11. M. Kotschenreuther, P.M. Valanju, S.M. Mahajan et al., Phys. Plasmas 14(7), 072502 (2007)

    Article  ADS  Google Scholar 

  12. S.F. Mao, Y. Guo, X.B. Peng et al., J. Nucl. Mater. 463, 1233–1237 (2015)

    Article  ADS  Google Scholar 

  13. X.J. Liu, G.Q. Li, D. Zhao et al., IEEE Trans. Plasma Sci. 46(5), 1377–1381 (2018)

    Article  ADS  Google Scholar 

  14. Y.F. Zhou, S.F. Mao, N. Shi et al., Fusion Eng. Des. 136, 931–935 (2018)

    Article  Google Scholar 

  15. X.J. Liu, G.L. Xu, R. Ding et al., Phys. Plasmas 27(9), 092508 (2020)

    Article  ADS  Google Scholar 

  16. T. Petrie, J. Watkins, L. Baylor et al., J. Nucl. Mater. 313–316 (2003) 834–838

  17. R.A. Pitts, S. Carpentier, F. Escourbiac et al., J. Nucl. Mater. 415(1), S957–S964 (2011)

    Article  Google Scholar 

  18. F. Maviglia, G. Federici, R. Wenninger et al., Fusion Eng. Des. 124, 385–390 (2017)

    Article  Google Scholar 

  19. M. Firdaouss, V. Riccardo, V. Martin et al., J. Nucl. Mater. 438, S536–S539 (2013)

    Article  Google Scholar 

  20. M. Firdaouss, T. Batal, J. Bucalossi et al., Fusion Eng. Des. 98–99 (2015) 1294–1298

  21. B. Zhang, M. Firdaouss, X. Gong et al., Fusion Eng. Des. 107, 58–63 (2016)

    Article  Google Scholar 

  22. A. Loarte, B. Lipschultz, A.S. Kukushkin et al., Nucl. Fusion 47(6), S203–S263 (2007)

    Article  Google Scholar 

  23. D. Carralero, P. Manz, L. Aho-Mantila et al., Phys. Rev. Lett. 115(21), 215002 (2015)

    Article  ADS  Google Scholar 

  24. S. Pestchanyi, IEEE Trans. Plasma Sci. 46(5), 1393–1397 (2018)

    Article  ADS  Google Scholar 

  25. T. Eich, A.W. Leonard, R.A. Pitts et al., Nucl. Fusion 53(9), 093031 (2013)

    Article  ADS  Google Scholar 

  26. R.J. Goldston, Nucl. Fusion 52(1), 013009 (2012)

    Article  ADS  Google Scholar 

  27. X.Q. Xu, N.M. Li, Z.Y. Li et al., Nucl. Fusion 59(12) (2019)

  28. C.S. Chang, S. Ku, R. Hager et al., Phys. Plasmas 28(2) (2021)

  29. R. Mitteau, A. Moal, J. Schlosser et al., J. Nucl. Mater. 266(1), 798–803 (1999)

    Article  ADS  Google Scholar 

  30. F. Militello, J.T. Omotani, Plasma Phys. Control Fusion 58(12), 125004 (2016)

    Article  ADS  Google Scholar 

  31. Y. Miyoshi, R. Hiwatari, Y. Someya et al., Fusion Eng. Des. 151, 111394 (2020)

    Article  Google Scholar 

  32. M. Brank, R.A. Pitts, G. Simič et al., Nucl. Mater. Energy 27, 101021 (2021)

    Article  Google Scholar 

  33. D. Carralero, S. Artene, M. Bernert et al., Nucl. Fusion 58(9), 096015 (2018)

    Article  ADS  Google Scholar 

  34. D. Carralero, M. Siccinio, M. Komm et al., Nucl. Fusion 57(5), 056044 (2017)

    Article  ADS  Google Scholar 

  35. X. Bonnin, W. Dekeyser, R. Pitts et al., Plasma Fusion Res. 11(0), 1403102–1403102 (2016)

    Article  ADS  Google Scholar 

  36. K. Tobita, K. Tani, Y. Kusama et al., Nucl. Fusion 35(12), 1585–1591 (1995)

    Article  ADS  Google Scholar 

  37. S. Liu, X. Cheng, X. Ma et al., Theor. App Mech. Lett. 9(3), 161–172 (2019)

    Article  Google Scholar 

  38. R. Mitteau, P. Stangeby, H. Labidi et al., J. Nucl. Mater. 463, 411–414 (2015)

    Article  ADS  Google Scholar 

  39. Z. Vizvary, W. Arter, T.R. Barrett et al., Fusion Eng. Des. 146, 2577–2580 (2019)

    Article  Google Scholar 

  40. S.H. Kim, J.F. Artaud, V. Basiuk et al., Plasma Phys. Control. Fusion 51(10) (2009)

  41. P.C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (CRC Press, 2000)

  42. J.A. Crotinger, L. LoDestro, L.D. Pearlstein et al., Office of Scientific & Technical Information Technical Reports, 1997

  43. R. Wenninger, F. Arbeiter, J. Aubert et al., Nucl. Fusion 55(6), 063003 (2015)

    Article  ADS  Google Scholar 

  44. D.A. D’Ippolito, J.R. Myra, S.I. Krasheninnikov, Phys. Plasmas 9(1), 222–233 (2002)

    Article  ADS  Google Scholar 

  45. M. Greenwald, D. Andelin, N. Basse et al., Nucl. Fusion 45(10), S109–S117 (2005)

    Article  Google Scholar 

  46. R.A. Pitts, in: 10th ITER International School, KAIST, Daejeon, South Korea, 2019

  47. H. Anand, R.A. Pitts, P.C. De Vries et al., Nucl. Fusion 60(3), 036011 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the CFETR task team 1 for their great suggestions and help.

Funding

This work was supported by the National Key Research & Development Program of China under Contracts Nos. 2018YFE0303103, National Natural Science Foundation of China under Contract Nos. 11875287, 11705233, 12022511, 11861131010, and the Key Research Program of Frontier Sciences, CAS with Grant No. ZDBS-LYSLH010.

Author information

Authors and Affiliations

Authors

Contributions

F.N.: Conceptualization, methodology, validation, formal analysis, investigation, writing - original draft, writing - review & editing.

Z.Y.: conceptualization, methodology, validation, formal analysis, investigation, supervision, project administration, funding acquisition. H.L: conceptualization, methodology, validation, formal analysis, sources, data curation. R.D: conceptualization, methodology, validation, writing - review & editing, funding acquisition. G.N.: writing - review & editing, validation, funding acquisition. B.Z: sources, validation, software. R.W: writing - review & editing, validation, visualization. K.L.: writing - review & editing, data curation. T.H.: resources, validation. S.P.: resources, validation. G.L.: project administration.

Corresponding author

Correspondence to Zhongshi Yang.

Ethics declarations

Ethical Approval

It is not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nian, F., Yang, Z., Li, H. et al. Assessment of the Impact of Magnetic Equilibria Designs on the Stationary Plasma Heat Flux Deposition onto the CFETR First Wall. J Fusion Energ 42, 2 (2023). https://doi.org/10.1007/s10894-022-00340-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10894-022-00340-w

Keywords

Navigation