Skip to main content
Log in

Plasma Production in ICRF in the Uragan-2M Stellarator in Hydrogen–Helium Gas Mixture

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Plasma production experiments in helium at Uragan-2M have been performed to investigate the role of the hydrogen minority in helium. The experiments presented here were carried on with a controlled minority hydrogen concentration. The hydrogen minority allowed one to increase plasma density more than three times as compared with pure helium. The obtained plasma density is highest for whole time of Uragan-2M operation. The developed scenario allowed to decrease the neutral gas pressure at which the plasma production is possible. This is a requirement for achieving regimes of plasma production with full ionization. Although the initial gas mixture 14%H2 + 86%He can be treated as optimum, there is no sensitive dependence on hydrogen minority concentration, which makes the scenario robust. This study, together with initial LHD experiments, confirm the prospects of target plasma production by ICRF waves for stellarator type machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. T. Klinger et al., Nucl. Fusion 59, 112004 (2019). https://doi.org/10.1088/1741-4326/ab03a7

    Article  ADS  Google Scholar 

  2. M. Endler et al., Fusion Eng. Des. 167, 112381 (2021). https://doi.org/10.1016/j.fusengdes.2021.112381

    Article  Google Scholar 

  3. S.A. Lazerson et al., Nucl. Fusion 60, 076020 (2020). https://doi.org/10.1088/1741-4326/ab8e61

    Article  ADS  Google Scholar 

  4. D.A. CastanoBardawil et al., Fusion Eng. Des. 166, 112205 (2021). https://doi.org/10.1016/j.fusengdes.2020.112205

    Article  Google Scholar 

  5. N.B. Marushchenko et al., EPJ Web Conf. 203, 01006 (2019). https://doi.org/10.1051/epjconf/201920301006

    Article  Google Scholar 

  6. T. Shimozuma et al., Nucl. Fusion 55, 063035 (2015). https://doi.org/10.1088/0029-5515/55/6/063035

    Article  ADS  Google Scholar 

  7. D. Gradic et al., Nucl. Fusion 55, 033002 (2015). https://doi.org/10.1088/0029-5515/55/3/033002

    Article  ADS  Google Scholar 

  8. S. Äkäslompolo et al., JINST 14, P07018 (2019). https://doi.org/10.1088/1748-0221/14/07/P07018

    Article  Google Scholar 

  9. P. van Eeten et al., Fusion Eng. Des. 146, 1329 (2019). https://doi.org/10.1016/j.fusengdes.2019.02.069

    Article  Google Scholar 

  10. V.E. Moiseenko et al., J Plasma Phys. 86, 905860517 (2020). https://doi.org/10.1017/S0022377820001099

    Article  Google Scholar 

  11. A.V. Lozin et al., Probl. At. Sci. Technol. Ser. Plasma Phys. 6, 10 (2020). https://doi.org/10.46813/2020-130-010

    Article  Google Scholar 

  12. R. Brakel et al., J. Nucl. Mater. 290, 1160 (2001). https://doi.org/10.1016/S0022-3115(00)00554-7

    Article  ADS  Google Scholar 

  13. H.G. Esser et al., J. Nucl. Mater. 241, 861 (1997). https://doi.org/10.1016/S0022-3115(97)80155-9

    Article  ADS  Google Scholar 

  14. S. Kamio et al., Nucl. Fusion 61, 114004 (2021). https://doi.org/10.1088/1741-4326/ac277b

    Article  ADS  Google Scholar 

  15. A. Lyssoivan et al., J. Nucl. Mater. 337–339, 456 (2005). https://doi.org/10.1016/j.jnucmat.2004.07.060

    Article  ADS  Google Scholar 

  16. A. Lyssoivan et al., J. Nucl. Mater. 363–365, 1358 (2007). https://doi.org/10.1016/j.jnucmat.2007.01.186

    Article  ADS  Google Scholar 

  17. M.K. Paul et al., AIP Conf. Proc. 1187, 177 (2009). https://doi.org/10.1063/1.3273722

    Article  ADS  Google Scholar 

  18. G. Sergienko et al., J. Nucl. Mater. 390–391, 979 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.252

    Article  ADS  Google Scholar 

  19. T. Wauters et al., AIP Conf. Proc. 1187, 173 (2009). https://doi.org/10.1063/1.3273721

    Article  ADS  Google Scholar 

  20. A. Lyssoivan et al., J. Nucl. Mater. 390–391, 907 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.233

    Article  ADS  Google Scholar 

  21. D. Douai et al., J. Nucl. Mater. 415, S1021 (2011). https://doi.org/10.1016/j.jnucmat.2010.11.083

    Article  Google Scholar 

  22. A. Lyssoivan et al., J. Nucl. Mater. 415, S1029 (2011). https://doi.org/10.1016/j.jnucmat.2010.11.059

    Article  Google Scholar 

  23. Yu. Yaowei et al., Plasma Phys. Control. Fusion 53, 015013 (2011). https://doi.org/10.1088/0741-3335/53/1/015013

    Article  ADS  Google Scholar 

  24. P.Y. Burchenko et al., JETP Lett. 15, 174 (1972)

    ADS  Google Scholar 

  25. T. Wauters et al., Plasma Phys. Control. Fusion 53, 125003 (2011). https://doi.org/10.1088/0741-3335/53/12/125003

    Article  ADS  Google Scholar 

  26. V.E. Moiseenko et al., Ukr. J. Phys. 62, 311 (2017). https://doi.org/10.15407/ujpe62.04.0311

    Article  Google Scholar 

  27. V.E. Moiseenko, Yu.V. Kovtun, I.E. Garkusha, Probl. At. Sci. Technol. Ser. Plasma Phys. 1, 3 (2021). https://doi.org/10.46813/2021-131-003

    Article  Google Scholar 

  28. V. Bykov et al., Fusion. Technol. 17, 140 (1990). https://doi.org/10.13182/FST90-A29177

    Article  ADS  Google Scholar 

  29. O.S. Pavlichenko, Plasma Phys. Control. Fusion 35, B223 (1993). https://doi.org/10.1088/0741-3335/35/SB/018

    Article  Google Scholar 

  30. G.P. Glazunov et al., Fusion Eng. Des. 170, 112716 (2021). https://doi.org/10.1016/j.fusengdes.2021.112716

    Article  Google Scholar 

  31. V.B. Korovin, E.D. Kramskoy, Probl. At. Sci. Technol. Ser. Plasma Phys. 6, 19–21 (2012)

    Google Scholar 

  32. R.O. Pavlichenko, N.V. Zamanov, A.E. Kulaga, Probl. At. Sci. Technol. Ser.: Plasma Phys. 1, 257 (2017)

    Google Scholar 

  33. G.L. Saksaganski et al., Ultrahigh vacuum in radiophysical apparatus building (Atomizdat, Moscow, 1976). (in Russian)

    Google Scholar 

  34. J.B. Hasted, Physics of atomic collisions (Butterworths, London, 1964)

    Google Scholar 

  35. Y. Itikawa (ed.), Landolt-Börnstein, group I elementary particles, nuclei and atoms 17A (interactions of photons and electrons with atoms) (Springer, Berlin, 2000)

    Google Scholar 

  36. Y. Itikawa (ed.), Landolt-Börnstein, group I elementary particles, nuclei and atoms 17B (collisions of electrons with atomic ions) (Springer, Berlin, 2001)

    Google Scholar 

  37. J.-S. Yoon et al., J. Phys. Chem. Ref. Data 37, 913 (2008). https://doi.org/10.1063/1.2838023

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Funding

This work also received funding from National Academy of Sciences of Ukraine (Grants П-3-22, and A-5-20).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Yu. V. Kovtun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseenko, V.E., Kovtun, Y.V., Lozin, A.V. et al. Plasma Production in ICRF in the Uragan-2M Stellarator in Hydrogen–Helium Gas Mixture. J Fusion Energ 41, 15 (2022). https://doi.org/10.1007/s10894-022-00326-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10894-022-00326-8

Keywords

Navigation