Skip to main content
Log in

Microstructural Effects of Y2O3 and TiC Additions in Tungsten

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Tungsten is a prime candidate for plasma facing materials (PFM) of internal components in fusion reactors due to its high thermal conductivity, high melting point and low sputtering yield. However, the brittleness of W at low temperature and the embrittlement caused by recrystallization and irradiation is a concern for this application of W engineering. To improve the properties, a modified W by the addition of a dispersion agent is introduced. The existence of dispersoids such as oxides (Y2O3, La2O3) or carbides (TiC, ZrC, HfC, Ta2C) helps to improve the mechanical properties and migration of grain boundaries therefore suppressing the embrittlement. In this work, three types of dispersion modified W are processed: W–Y2O3, W–TiC and W–TiC–Y2O3. The materials are fabricated with novel wet chemical method followed by consolidation through spark plasma sintering (SPS). The microhardness and microstructure are studied in this work. Dispersoids’density, size, distribution, crystal structure as well as composition are also investigated. A range of characterization techniques is applied, including metallography microscopy, scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Rieth, S.L. Dudarev, S.M. Gonzalez de Vicente, J. Aktaa, T. Ahlgren, S. Antusch, D.E.J. Armstrong, M. Balden, N. Baluc, M.-F. Barthe, W.W. Basuki, M. Battabyal, C.S. Becquart, D. Blagoeva, H. Boldyryeva, J. Brinkmann, M. Celino, L. Ciupinskie, J.B. Correia, A. De Backer, C. Domain, E. Gaganidze, C. García-Rosales, J. Gibson, M.R. Gilbert, S. Giusepponi, B. Gludovatz, H. Greuner, K. Heinola, T. Höschen, A. Hoffmann, N. Holstein, F. Koch, W. Krauss, H. Li, S. Lindig, J. Linke, Ch. Linsmeier, P. López-Ruiz, Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J. Nucl. Mater. 432(1–3), 482–500 (2013)

    Article  ADS  Google Scholar 

  2. G. Federici, J.P. Coad, A.A. Haasz, G. Janeschitz, N. Noda, V. Philipps, J. Roth, C.H. Skinner, R. Tivey, C.H. Wu, Critical plasma–wall interaction issues for plasma-facing materials and components in near-term fusion devices. J. Nucl. Mater. 283–287, 110–119 (2000)

    Article  ADS  Google Scholar 

  3. R.A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, A.S. Kukushkin, S. Lisgo, A. Loarte, M. Merola, R. Mitteau, A.R. Raffray, M. Shimada, P.C. Stangeby, Physics basis and design of the ITER plasma-facing components. J. Nucl. Mater. 415(1), S957–S964 (2011)

    Article  Google Scholar 

  4. S. Wurster, N. Baluc, M. Battabyal, T. Crosby, J. Du, C. Garcia-Rosales, A. Hasegawa, A. Hoffmann, A. Kimura, H. Kurishita, R.J. Kurta, H. Li, S. Nosh, J. Reiser, J. Riesch, M. Rieth, W. Setyawan, M. Walter, J.H. You, R. Pippan, Recent progress in R&D on tungsten alloys for divertor structural and plasmafacing materials. J. Nucl. Mater. 442(1–3), S181–S189 (2013)

    Article  Google Scholar 

  5. B.I. Khripunov, V.S. Koidan, A.I. Ryazanov, V.M. Gureev, S.N. Kornienko, S.T. Latushkin, A.S. Rupyshev, E.V. Semenov, V.S. Kulikauskas, V.V. Zatekin, Study of tungsten as a plasma-facing material for a fusion reactor. Phys. Procedia. 71, 63–67 (2015)

    Article  ADS  Google Scholar 

  6. R. Neu, J. Riesch, J.W. Coenen, J. Brinkmann, A. Calvo, S. Elgeti, C. García-Rosales, H. Greuner, T. Hoeschen, G. Holzner, F. Klein, F. Koch, Ch. Linsmeier, A. Litnovsky, T. Wegener, S. Wurster, J.-H. You, Advanced tungsten materials for plasma-facing components of DEMO and fusion power plants. Fusion Eng. Des. 109–111, 1046–1052 (2016)

    Article  Google Scholar 

  7. H. Kurishita, S. Kobayashi, K. Nakai, T. Ogawa, A. Hasegawa, K. Abe, H. Arakawa, S. Matsuo, T. Takida, K. Takebe, M. Kawai, N. Yoshida, Development of ultra-fine grained W-(0.25–0.8) wt% TiC and its superior resistance to neutron and 3 MeV He-ion irradiations. J. Nucl. Mater. 377(1), 34–40 (2008)

    Article  ADS  Google Scholar 

  8. T.Q. Zhang, Y.J. Wang, Y. Zhou, G.M. Song, High temperature electrical resistivities of ZrC particle–reinforced tungsten-matrix composites. Int. J. Refract. Met. Hard Mater. 28(4), 498–502 (2010)

    Article  Google Scholar 

  9. K. Cui, Y.Z. Shen, J. Yu, B. Ji, Microstructural characteristics of commercial purity W and W–1% La2O3 alloy. Int. J. Refract. Met. Hard Mater. 41, 143–151 (2013)

    Article  Google Scholar 

  10. M. Battabyal, R. Schaublin, P. Spatig, N. Baluc, W–2wt. %Y2O3 composite: microstructure and mechanical properties. Mater. Sci. Eng. A 538(3), 53–57 (2012)

    Article  Google Scholar 

  11. L. Veleva, Z. Oksiuta, U. Vogt, N. Baluc, Sintering and characterization of W–Y and W–Y2O3 materials. Fusion Eng. Des. 84(7), 1920–1924 (2008)

    Google Scholar 

  12. G.M. Song, Y.J. Wang, Y. Zhou, Thermomechanical properties of TiC particle-reinforced tungsten composites for high temperature applications. Int. J. Refract. Met. Hard Mater. 21(1), 1–12 (2003)

    Google Scholar 

  13. M.Y. Xu, L.M. Luo, Y. Xu, X. Zan, Q. Xu, K. Tokunaga, X.Y. Zhu, Y.C. Wu, Effect of laser beam thermal shock on the helium ion irradiation damage behavior of W-TiC-Y2O3 composites. J. Nucl. Mater. 509, 198–203 (2018)

    Article  ADS  Google Scholar 

  14. G. Yao, L.M. Luo, X.Y. Tan, X. Zan, Q. Xu, X.Y. Zhu, C.Y. Lu, X.Z. Cao, J.G. Cheng, Y.C. Wu, Effect of Y2O3 particles on the helium on irradiation damage of W-2%Y2O3 composite prepared by wet chemical method. Materialia 6, 100268 (2019)

    Article  Google Scholar 

  15. X.Y. Ding, L.M. Luo, L.M. Huang, G.N. Luo, X.Y. Zhu, J.G. Cheng, Y.C. Wu, Preparation of TiC/W core–shell structured powders by one-step activation and chemical reduction process. J. Alloys Compd. 619, 704–708 (2015)

    Article  Google Scholar 

  16. M.Y. Xu, L.M. Luo, J.S. Lin, Y. Xu, X. Zan, Q. Xu, K. Tokunaga, X.Y. Zhu, Y.C. Wu, Microstructure and transient laser thermal shock behavior of W-–TiC–Y2O3 composites prepared by wet chemical method. J. Alloys Compd. 766, 784–790 (2018)

    Article  Google Scholar 

  17. X.Y. Ding, L.M. Luo, Z.L. Lu, G.N. Luo, X.Y. Zhu, J.G. Cheng, Y.C. Wu, Chemically produced tungsten–praseodymium oxide composite sintered by spark plasma sintering. J. Nucl. Mater. 454(1–3), 200–206 (2014)

    Article  ADS  Google Scholar 

  18. X.Y. Ding, Study on preparation and irradiation damage behavior of tungsten-based composites by wet chemical method. PhD thesis. (2017) (in Chinese)

  19. W.Q. Hu, Z. Dong, L.M. Yu, Z.Q. Ma, Y.C. Liu, Synthesis of W–Y2O3 alloys by freeze-drying and subsequent low temperature sintering: Microstructure refinement and second phase particles regulation. J. Mater. Sc.i Technol 36, 84–90 (2020)

    Article  Google Scholar 

  20. M.A. Yar, S. Wahlberg, H. Bergqvist, H.G. Salem, M. Johnsson, M. Muhammed, Spark plasma sintering of tungsten–yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization. J. Nucl. Mater. 412(2), 227–232 (2011)

    Article  ADS  Google Scholar 

  21. J. Jung, S. Kang, Sintered (Ti, W)C carbides. J. Scripta Materialia. 56(7), 561–564 (2007)

    Article  Google Scholar 

  22. J.S. Lin, Y.C. Hao, L.M. Luo, M.L. Zhao, Q. Xu, X. Zan, X.Y.Y.C. Wu, Microstructure and performances of W-TiC-Y2O3 composites prepared by mechano-chemical and wet-chemical methods. J. Alloys Compd. 732, 871–879 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities of China (Grand No. PA2020GDSK0089), and also was kindly supported by Prof. Wang from Taiyuan Technology University, Prof. Liu from Beijing Normal university, Prof. Wan and Prof. Han from University of Science & Technology Beijing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yina Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Huang, Y., Wu, Y. et al. Microstructural Effects of Y2O3 and TiC Additions in Tungsten. J Fusion Energ 40, 9 (2021). https://doi.org/10.1007/s10894-021-00295-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10894-021-00295-4

Keywords

Navigation