Skip to main content

Instability of Electron Bernstein Mode in Presence of Drift Wave Turbulence Associated with Density and Temperature Gradients

Abstract

The instability of electron Bernstein mode has been investigated in presence of drifts due to density and temperature gradient. Nonlinear resonant interaction of drift mode is considered for the investigation of the instability. We have considered a uniform force field \(\mathbf{F}\) which is the cause of \(\mathbf{F}\times \mathbf{B}\) drift due to temperature perpendicular to the magnetic field \(\mathbf{B}\) in the system. Using Vlasov-Poissons system of equations and Maxwellian type distribution function of particles that involve the effect of \(\mathbf{F}\) associated with density and temperature gradient. We have derived a nonlinear dispersion relation for electron Bernstein mode and then estimated its growth rate. We have analyzed various aspects of the growth rate of electron Bernstein mode associated with the variation of the gradients of the density and temperature by using experimental data in tokamak plasmas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    I.B. Bernstein, Phys. Rev. 109, 10 (1958)

    ADS  MathSciNet  Google Scholar 

  2. 2.

    T.H. Stix, Waves in Plasmas, 1st edn. (Springer, New York, 1992)

    Google Scholar 

  3. 3.

    W.S. Kurth, J.D. Craven, L.A. Frank, D.A. Gurnett, J. Geophys. Res. 84, 4145–4164 (1979). https://doi.org/10.1029/JA084iA08

    ADS  Article  Google Scholar 

  4. 4.

    J. Lee, P.H. Yoon, J. Seough, R.A. Lopez, J. Hwang, J. Lee, G.S. Choe, Geophys. Res. (2018). https://doi.org/10.1029/2018JA025667

  5. 5.

    S. Grimald, P.M.E. Decreau, P. Canu, A. Rochel, X. Vallies, J. Geophys. Res. 113, A11216 (2008). https://doi.org/10.1029/2008JA013290

    ADS  Article  Google Scholar 

  6. 6.

    K. Uchijima, T. Takemoto, J. Morikawa, Y. Ogawa, Plasma Phys. Control. Fusion 57, 065003 (2015)

    ADS  Google Scholar 

  7. 7.

    R. Prater, Phys. Plasmas 11, 2349–2376 (2004)

    ADS  Google Scholar 

  8. 8.

    V. Shevchenko, Y. Baranov, M. O’Brein, A. Saveliv, Phys. Rev. Lett. 89, 265005 (2002)

    ADS  Google Scholar 

  9. 9.

    H.P. Laqua, H. Maassberg, N.B. Marushchenko, F. Volpe, A. Weller, W. Kasparek, Phys. Rev. Lett. 90, 075003 (2003)

    ADS  Google Scholar 

  10. 10.

    H.P. Laqua, V. Erckmann, H.J. Hartfuss, H. Laqua, Phys. Rev. Lett. 78, 3467–3470 (1997)

    ADS  Google Scholar 

  11. 11.

    D.A. gates et al., Nucl. Fusion 49, 104016 (2009)

    ADS  Google Scholar 

  12. 12.

    H. Meyer et al., Nucl. Fusion 49, 104017 (2009)

    ADS  Google Scholar 

  13. 13.

    H.P. Laqua, Plasma Phys. Control. Fusion 49, R1–42 (2007)

    ADS  Google Scholar 

  14. 14.

    C.E. Kessel et al., Phys. Plasmas 13, 056108 (2006)

    ADS  Google Scholar 

  15. 15.

    A.K. Ram, S.D. Schultz, Phys. Plasmas 7, 4084 (2002)

    ADS  Google Scholar 

  16. 16.

    J. Preinhaelter, V. Kopecky, J. Plasma Phys. 10, 1 (1973)

    ADS  Google Scholar 

  17. 17.

    M. Nambu, Laser Part Beams 1, 427 (1983)

    ADS  Google Scholar 

  18. 18.

    M. Nambu, Space Sci. Rev. 44, 357–391 (1986)

    ADS  Google Scholar 

  19. 19.

    A. Kryshtal, V. Fedun, S. Gerasimenko, A. Voitsekhovska, Sol. Phys. 290, 3331–3341 (2015)

    ADS  Google Scholar 

  20. 20.

    T. Oscarsson, G. Sternberg, O. Santolik, Phys. Chem. Earth C 26, 229–235 (2001)

    Google Scholar 

  21. 21.

    O. Santolik, J. S. Pickett, D. A. Gurnett, L. R. O. Storey, J. Geophys. Res. 107, SMP 17–1, (2002). https://doi.org/10.1029/2001JA000146

  22. 22.

    K. Min, K. Liu, J. Geophys. Res. A: Space Phys. 121, 475–491 (2016). https://doi.org/10.1002/2015JA022042

    ADS  Article  Google Scholar 

  23. 23.

    M. Horky, Y. Omura, O. Santolik, Phys. Plasmas 25, 042905 (2018)

    ADS  Google Scholar 

  24. 24.

    P.N. Deka, Pramana 50, 345–354 (1998)

    ADS  Google Scholar 

  25. 25.

    M. Sing, Planet. Space Sci. 55, 467–474 (2007)

    ADS  Google Scholar 

  26. 26.

    M. Singh, P.N. Deka, Phys. Plasmas 12, 102304 (2005)

    ADS  Google Scholar 

  27. 27.

    M. Singh, Int. J. Adv. Multidiscip. Res 3(10), 9245619 (2016)

    Google Scholar 

  28. 28.

    P.H. Yoon, F. Hadi, A. Qamar, Phys. Plasmas 21, 074502 (2014)

    ADS  Google Scholar 

  29. 29.

    F.D. Henning, R.L. Mace, S.R. Pillay, J. Geophys. Res. 116, A12203 (2011). https://doi.org/10.1029/2011JA016965

    ADS  Article  Google Scholar 

  30. 30.

    R.L. Mace, M.A. Hellberg, Phys. Plasmas 16, 072113 (2009)

    ADS  Google Scholar 

  31. 31.

    M. Nambu, Space Sci. Rev. 44, 357–391 (1986)

    ADS  Google Scholar 

  32. 32.

    M. Nambu, S.V. Vladimirov, H. Schamel, Phys. Lett. A 178, 400–406 (1993)

    ADS  Google Scholar 

  33. 33.

    P.N. Deka, K.S. Goswami, S. Bujarbarua, Planet. Space Sci. 45, 1443 (1997)

    ADS  Google Scholar 

  34. 34.

    M. Nambu, B.J. Saikia, D. Gyobu, J.I. Sakai, Phys. Plasmas 6, 994 (1999)

    ADS  Google Scholar 

  35. 35.

    S.N. Sarma, M. Nambu, S.V. Vladimirov, Phys. Plasmas 1(12), 4076 (1994)

    ADS  Google Scholar 

  36. 36.

    V.S. Krivitsky, S.V. Vladimirov, Phys. Lett. A 143, 329 (1990)

    ADS  Google Scholar 

  37. 37.

    P.N. Deka, J.K. Deka, J. Fusion Energ. 37, 301–307 (2018)

    Google Scholar 

  38. 38.

    P.N. Deka, A. Borgohain, Phys. Plasmas 18, 042311 (2011)

    ADS  Google Scholar 

  39. 39.

    V.N. Tsytovich, L. Stenflo, H. Wilhelmsson, Phys. Scr. 11, 251 (1975)

    ADS  Google Scholar 

  40. 40.

    J. Zielinski, A.I. Smolyakov, P. Beyer, S. Benkadda, Phys. Plasmas 24, 024501 (2017)

    ADS  Google Scholar 

  41. 41.

    W.M. Stacey, Nuclear Fusion (2018). https://doi.org/10.1088/174-4326/aaa7cf

  42. 42.

    V. Tangri, R. Sing, P. Kaw, Phys. Plasmas 12, 072506 (2005)

    ADS  Google Scholar 

  43. 43.

    H. Du, H. Jhang, T.S. Hanm, J.Q. Dong, Z.X. Wang, Phys. Plasmas 24, 122501 (2017)

    ADS  Google Scholar 

  44. 44.

    H. Du, Z.X. Wang, J.Q. Dong, S.F. Liu, Phys. Plasmas 21, 052101 (2014)

    ADS  Google Scholar 

  45. 45.

    A. Hiros, M. Elia, Plasma Phys. Control. Fusion 45, L1–L7 (2003)

    ADS  Google Scholar 

  46. 46.

    S. Ichimaru, Basic Principles of Plasma Physics: A Statistical approach (University of Tokyo, Tokyo, 1994)

    Google Scholar 

  47. 47.

    J.C. Perez, W. Horton, K. Gentle, W.L. Rowan, K. Lee, R.B. Dahlburg, Phys. Plasmas 13, 032101 (2006)

    ADS  Google Scholar 

  48. 48.

    S. Brunner. https://crppwww.epf1.ch/brunner/inhomoplasma.pdf

  49. 49.

    L. Bertalot, V. krasilnikov, L. Core, A. Saxena, N. Yukhnov, R. Barnsley, M. Walsh, J. Fusion Energ. 38, 283–290 (2019)

    Google Scholar 

  50. 50.

    W. Horton, B. Hu, J.Q. Dong, P. Zhu, New J. Phys. 5, 14 (2003)

    ADS  Google Scholar 

  51. 51.

    W. Horton, Turbulent Transport in Magnetized Plasmas (World Scientific, Singapore, 2013)

    MATH  Google Scholar 

  52. 52.

    A. Hirose, M. Elia, A.I. Smolyakov, M. Yagi, Phys. Plasmas 9(5), 1659–1666 (2002)

    ADS  Google Scholar 

  53. 53.

    W. Horton, G.T. Hoang, C. Bourdelle, X. Garbet, M. Ottaviani, L. Colas, Phys. Plasmas 11(5), 2600–2606 (2004)

    ADS  Google Scholar 

  54. 54.

    N. Bisai, P.K. Kaw, Phys. Plasmas 23, 092509 (2016)

    ADS  Google Scholar 

  55. 55.

    O. Chapurin, A. Smolyakov, J. Appl. Phys. 119, 243306 (2016)

    ADS  Google Scholar 

  56. 56.

    ITER Physics Expert Groups on Confinement and Transport and Confinement Modelling and Database, Nucl. Fusion 39, 2175 (1999)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Senapati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Senapati, P., Deka, P.N. Instability of Electron Bernstein Mode in Presence of Drift Wave Turbulence Associated with Density and Temperature Gradients. J Fusion Energ 39, 477–490 (2020). https://doi.org/10.1007/s10894-020-00269-y

Download citation

Keywords

  • Electron Bernstein mode
  • Density and temperature gradients
  • Wave–particle interaction
  • Particle drift velocity