Skip to main content
Log in

An Overview of the Hybrid Illinois Device for Research and Applications Material Analysis Test-stand (HIDRA-MAT)

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The Hybrid Illinois Device for Research and Applications (HIDRA) at the University of Illinois at Urbana-Champaign is a toroidal plasma device that enables fusion plasma-material interaction testing with both stellarator and tokamak plasmas. HIDRA’s long-pulse steady state stellarator plasmas provide a testbed for plasma facing component (PFC) plasma exposures. The HIDRA Material Analysis Test-stand (HIDRA-MAT) is a material characterization module attached to HIDRA that is being designed and fabricated to include thermal desorption spectroscopy and laser induced breakdown spectroscopy systems for in-vacuo PFC characterization. A specialized rotatable sample holder positions the sample for liquid metal droplet application from a liquid metal droplet injector on HIDRA-MAT. Early experiments look to investigate the effect liquid lithium has on porous tungsten samples’ retention of H, D, and He after plasma exposure. Preliminary results from a dual residual gas analyzer system show the ability to differentiate D2 and He in HIDRA-MAT. This work aims to advance the understanding of liquid metal PFCs and further the design and development of new fusion PFCs and technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Fiflis, N. Connolly, D.N. Ruzic, Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas. J. Nucl. Mater. 482, 201 (2016)

    Article  ADS  Google Scholar 

  2. D.H. Liu, S.Y. Dai, M. Wada et al., Modelling of hydrogen reflection on tungsten fuzzy surface in an erosive hydrogen plasma. Nucl. Fusion 60, 056018 (2020)

    Article  ADS  Google Scholar 

  3. Z.S. Hartwig, H.S. Barnard, B.N. Sorbom et al., Fuel retention measurements in Alcator C-Mod using accelerator-based in situ material surveillance. J. Nucl. Mater. 463, 73–77 (2015)

    Article  ADS  Google Scholar 

  4. D.N. Ruzic, W. Xu, D. Andruczyk et al., Lithium–metal infused trenches (LiMIT) for heat removal in fusion devices. Nucl. Fusion 51, 102002 (2011)

    Article  ADS  Google Scholar 

  5. D. Andruczyk, R. Maingi, J.S. Hu et al., Overview of lithium injection and flowing liquid lithium results from the US–China collaboration on EAST. Phys. Scr. T171, 014067 (2020)

    Article  Google Scholar 

  6. D.N. Ruzic, M. Szott, C. Sandoval et al., Flowing liquid lithium plasma-facing components—physics, technology and system analysis of the LiMIT system. Nucl. Mater. Energy. 12, 1324–1329 (2017)

    Article  Google Scholar 

  7. R. Rizkallah, D. Andruczyk, A. Shone et al., Latest results from the Hybrid Illinois Device for Research and Applications (HIDRA). IEEE Trans. Plasma Sci. 46(7), 2685–2690 (2018)

    Article  ADS  Google Scholar 

  8. S. Marcinko, D. Curreli, Numerical characterization of the edge transport conditions and limiter fluxes of the HIDRA stellarator. Phys. Plasmas. 25, 022507 (2018)

    Article  ADS  Google Scholar 

  9. C.N. Taylor, B. Heim, S. Gonderman et al., Materials analysis and particle probe: a compact diagnostic system for in situ analysis of plasma-facing components. Rev. Sci. Instrum. 83, 10D703 (2012)

    Article  Google Scholar 

  10. H. Moriyama, K. Iwasaki, Y. Ito, Transport of tritium in liquid lithium. J. Nucl. Mater. 191–194, 190–193 (1992)

    Article  ADS  Google Scholar 

  11. R. Rizkallah, S. Marcinko, D. Curreli et al., Mapping of the HIDRA stellarator magnetic flux surfaces. Phys. Plasmas. 26, 092503 (2019)

    Article  ADS  Google Scholar 

  12. P. Fiflis, A. Press, W. Xu et al., Wetting properties of liquid lithium on select fusion relevant surfaces. Fusion Eng. Des. 89, 2827–2832 (2014)

    Article  Google Scholar 

  13. M. Zibrov, Yu Gasparyan, S. Ryabtsev et al., Isolation of peaks in TDS spectra of deuterium from ion irradiated tungsten. Phys. Procedia. 71, 83–87 (2015)

    Article  ADS  Google Scholar 

  14. P.Y. Achener, Alkali Metals Evaluation Program. Rep. AGN-8202, Aerojet-General Corp., Nov. 1966.

  15. J.W. Taylor, The surface energies of the alkali metals. Phil. Mag. 46, 867–876 (1955)

    Article  Google Scholar 

  16. D. Alpert, New developments in the production and measurement of ultra high vacuum. J. Applied Phys. 24, 860 (1953)

    Article  ADS  Google Scholar 

  17. C. Li, C. Feng, H.Y. Oderji et al., Review of LIBS application in nuclear fusion technology. Front. Phys. 11(6), 114214 (2016)

    Article  ADS  Google Scholar 

  18. Y. Yu, J. Hu, Z. Wan et al., Mass separation of deuterium and helium with conventional quadrupole mass spectrometer by using varied ionization energy. Rev. Sci. Instrum. 87, 035120 (2016)

    Article  ADS  Google Scholar 

  19. A. de Castro, A. Sepetys, M. Gonzalez, et al., Temperature dependence of liquid lithium film formation and deuterium retention on hot W samples studied by LID-QMS. Implications for future fusion reactors. Nucl. Fusion 58:046003 (2018)

Download references

Acknowledgements

This work is supported by the Department of Energy DESC0017719, by the University of Illinois Grainger College of Engineering, the Department of Nuclear, Plasma, and Radiological Engineering, the Office of the Vice Chancellor of Research, Facilities, Services at the University of Illinois at Urbana-Champaign and Institute for Plasma Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shone, A., Koyn, Z., Rizkallah, R. et al. An Overview of the Hybrid Illinois Device for Research and Applications Material Analysis Test-stand (HIDRA-MAT). J Fusion Energ 39, 448–454 (2020). https://doi.org/10.1007/s10894-020-00260-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-020-00260-7

Navigation