Symplectic Computations of Fast Ion Trajectory and Radial Diffusion Coefficient in MHD Perturbed Tokamak

Abstract

The magneto-hydrodynamics (MHD) modes existing in conducting plasmas can greatly affect charged particle’s dynamics. Low frequency MHD perturbations, called the neo-classical tearing (NTM) modes, give rise to magnetic islands which can deteriorate fast ion confinement, especially in tokamak plasmas. Here, a Hamiltonian guiding-center code, based on symplectic algorithm which allows efficient computations of energetic ion trajectories and transport coefficients, has been applied to magnetically perturbed tokamak plasmas. The effects of NTM perturbations on the energetic ion trajectories and diffusion coefficient have been presented. It is demonstrated that the inclusion of such steady state magnetic perturbations in the guiding center drift orbit computations escalates the loss of energetic ions via radial diffusion. Moreover, the broader NTMs lead to a significant enhancement of the radial diffusion coefficient.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    J. Ongena, R. Koch, R. Wolf, H. Zohm, Magnetic-confinement fusion. Nat. Phys. 12, 398 (2016)

    Article  Google Scholar 

  2. 2.

    L.C. Woods, Theory of Tokamak Transport (Wiley, New York, 2006)

    MATH  Google Scholar 

  3. 3.

    A.A. Harms, K.F. Schoepf, G.H. Miley, P.R. Kingdon, Principles of Fusion Energy (World Scientefic Publishing, Singapore, 2000)

    Book  Google Scholar 

  4. 4.

    W.W. Heidbrink, G.J. Sadler, The behaviour of fast ions in tokamak experiments. Nucl. Fusion 34, 243 (1994)

    Article  Google Scholar 

  5. 5.

    M. Ariola, A. Pironti, Magnetic Control of Tokamak Plasmas, 2nd edn. (Springer, London, 2008)

    MATH  Google Scholar 

  6. 6.

    P. Helander, Theory of Plasma Confinement in Non-axisymmetric Magnetic Fields (IOP Publishing Ltd., Bristol, 2014)

    Book  Google Scholar 

  7. 7.

    P.J. Channell, C. Scovel, Symplectic integration of hamiltonian systems. Nonlinearity 3, 231 (1990)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    H. Qin, X. Guan, Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields. Phys. Rev. Lett. 100, 035006 (2008)

    ADS  Article  Google Scholar 

  9. 9.

    H. Qin, X. Guan, W.M. Tang, Variational symplectic algorithm for guiding center dynamics and its application in tokamak geometry. Phys. Plasmas 16, 042510 (2009)

    ADS  Article  Google Scholar 

  10. 10.

    P.J. Channell. Symplectic Integration Algorithms. Internal report At-6:ATN-83-9, Los Alamos National Laboratory, (1983)

  11. 11.

    A.-S. Libert, C. Hubaux and T. Carletti. Symplectic integration of deviation vectors and chaos determination (2010). arXiv:1005.5611v2.s

  12. 12.

    M. Khan, A. Zafar, M. Kamran, Fast ion trajectory calculations in tokamak magnetic configuration using symplectic integration algorithm. J. Fusion Energ. 34, 298 (2015)

    Article  Google Scholar 

  13. 13.

    H.E. Mynick, Transport of energetic ions by low-n magnetic perturbations. Phys. Fluids B 5, 1471 (1993)

    ADS  Article  Google Scholar 

  14. 14.

    M. Khan. Synergetic and resonant effects on fast ion transport in tokamaks. Ph.D. thesis, University of Innsbruck, Austria (2012)

  15. 15.

    V.I. Arnold, Mathematical Methods of Classical Mechanics, 2nd edn. (Springer, Berlin, 1974)

    Google Scholar 

  16. 16.

    E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration, 2nd edn. (Springer, Berlin, 2006)

    MATH  Google Scholar 

  17. 17.

    R.J. Goldston, R.B. White, A.H. Boozer, Confinement of high-energy trapped particles in tokamaks. Phys. Rev. Lett. 47, 647 (1981)

    ADS  Article  Google Scholar 

  18. 18.

    M. Henon, C. Heiles, The applicability of the third integral of motion: some numerical experiments. J. Astron. 69, 73 (1964)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    J. Larsson, The guiding center lagrangian. Phys. Scr. 33, 342 (1986)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    R.B. White, M.S. Chance, Hamiltonian guiding center drift orbit calculation for plasmas of arbitrary cross section. Phys. Fluids 27, 2455 (1984)

    ADS  Article  Google Scholar 

  21. 21.

    R.B. White, Chaos in trapped particle orbits. Phys. Rev. E 58, 1774 (1998)

    ADS  Article  Google Scholar 

  22. 22.

    E. Strumberger, S. Gunter, E. Schwarz, C. Tichmann, Fast particle losses due to NTMs and magnetic field ripple. New J. Phys. 10, 023017 (2008)

    ADS  Article  Google Scholar 

  23. 23.

    R.J. Buttery, S. G\(\ddot{u}\)nter, G. Giruzzi, T.C. Hender, D. Howell, G. Huysmans, R.J. La Haye, M. Maraschek, H. Reimerdes, O. Sauter, C.D. Warrick, H.R. Wilson, H. Zohm, Neoclassical tearing modes. Plasma Phys. Control. Fusion 42, B61 (2000)

  24. 24.

    L. Haye, Neoclassical tearing modes and their control. Phys. Plasmas 13, 055501 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  25. 25.

    F. Halpern, G. Bateman, A. Kritz, Integrated simulations of saturated neoclassical tearing modes in DIII-D, JET, and ITER plasmas. Phys. Plasmas 13, 1 (2006)

    Article  Google Scholar 

  26. 26.

    E.M. Carolipio, W.W. Heidbrink, C.B. Forest, R.B. White, Simulations of beam ion transport during tearing modes in the DIII-D tokamak. Nucl. Fusion 42, 853 (2002)

    ADS  Article  Google Scholar 

  27. 27.

    A.I. Morozov, L.S. Solovev, Motion of charged particles in electromagnetic fields. Rev. Plasma Phys. 2, 201 (1966)

    ADS  Google Scholar 

  28. 28.

    M. Baruzzo et al., Neoclassical tearing mode (NTM) magnetic spectrum and magnetic coupling in jet tokamak. Plasma Phys. Control. Fusion 52, 075001 (2010)

    ADS  Article  Google Scholar 

  29. 29.

    V.A. Yavorskij, Z.N. Andrushchenko, Three-dimensional Fokker–Planck equation for trapped fast ions in a tokamak with weak toroidal field ripples. Phys. Plasmas 6, 3853 (1999)

    ADS  Article  Google Scholar 

  30. 30.

    J. Wesson, Tokamaks, 3rd edn. (Oxford Science Publication, Oxford, 2004)

    MATH  Google Scholar 

  31. 31.

    M. Khan, K. Schoepf, V. Goloborod’ko, V.A. Yavorskij, Symplectic simulation of fast alpha particle radial transport in Tokamaks in the presence of TF ripples and a neoclassical tearing mode. J. Fusion Energ. 31, 547 (2012)

    ADS  Article  Google Scholar 

  32. 32.

    H. Mimata, K. Tani, H. Tsutsui, K. Tobita, S. Tsuji-iio, R. Shimada, Numerical study of the ripple resonance diffusion of alpha particles in tokamaks. Plasma Fusion Res. 4, 008 (2009)

    ADS  Article  Google Scholar 

  33. 33.

    V.Y. Goloborod’ko, V.A. Yavorskij, On the formulation of a 3D boundary value problem for the fast particle distribution function in axi-symmetric tokamak plasmas. Ukran. J. Phys. 42(2), 143–152 (1997)

    Google Scholar 

  34. 34.

    V.A. Yavorskij, K. Schoepf, Z.N. Andrushchenko, B.H. Cho, V.Y. Goloborod’ko, S.N. Reznyk, Analytical models of axi-symmetric toroidal magnetic fields with non-circular flux surfaces. Plasma Phys. Control. Fusion 43, 249 (2001)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Kamran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Khalid, M.H., Kamran, M. et al. Symplectic Computations of Fast Ion Trajectory and Radial Diffusion Coefficient in MHD Perturbed Tokamak. J Fusion Energ 39, 77–85 (2020). https://doi.org/10.1007/s10894-020-00236-7

Download citation

Keywords

  • MHD
  • SIA
  • NTM
  • Fusion plasma
  • Particle trajectories