Skip to main content
Log in

First Results and Plasma Current Start-Up in Taban Tokamak

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Plasma current start-up and pre-ionization is an important motivation in Taban tokamak. The plasma current start-up has been successfully achieved using a central solenoid and a pre-ionization system and the experimental conditions have been optimized. Two distinct schemes were used to start-up the plasma current. Hot cathode emitter and electron cyclotron resonance (ECR) was used as the pre-ionization system. ECR pre-ionization circuit of 2.45 GHz magnetron was modified for long duration pulse mode. The transient plasma parameters were measured during discharge as a function of time in different conditions, while a toroidal field of 0.1 T with 4 ms flat-top was being applied. The experimental results showed that the plasma current could be started up by both ECR and hot cathode emitter. In the optimum conditions, a plasma current of 7.5 kA has been achieved with pulse duration of ~ 0.7 ms using the electron cyclotron pre-ionization system. Under such circumstances, the X-ray emission, as well as, the impurity level was minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. An, J. Lee, H. Lee, J. Jo, B.-K. Jung, K.-J. Chung et al., Plasma start-up design and first plasma experiment in VEST. Fusion Eng. Des. 96, 274–280 (2015)

    Article  Google Scholar 

  2. Y. Peng, W. Jiang, M.E. Innocenti, Y. Zhang, X. Hu, G. Zhuang, et al. On the breakdown modes and parameter space of ohmic tokamak start-up. J. Plasma Phys. 84(5), 905840505 (2018). https://doi.org/10.1017/S0022377818001046

    Article  Google Scholar 

  3. V. Erckmann, U. Gasparino, Electron cyclotron resonance heating and current drive in toroidal fusion plasmas. Plasma Phys. Controll. Fusion 36(12), 1869 (1994)

    Article  ADS  Google Scholar 

  4. H. Mirzaei, R. Amrollahi, Design, simulation and construction of the Taban tokamak. Plasma Sci. Technol. 20(4), 045103 (2018)

    Article  ADS  Google Scholar 

  5. B.T. Lloyd, G. Jackson, T. Taylor, E. Lazarus, T. Luce, R. Prater, Low voltage ohmic and electron cyclotron heating assisted startup in DIII-D. Nucl. Fusion 31(11), 2031 (1991)

    Article  Google Scholar 

  6. P. Chattopadhyay, R. Pal, N. Ray, P. Gupta, Breakdown and preionization experiments in the SINP tokamak. Nucl. Fusion 36(9), 1205 (1996)

    Article  ADS  Google Scholar 

  7. G. Granucci, G. Ramponi, G. Calabrò, F. Crisanti, S. Nowak, G. Ramogida et al., Plasma start-up results with electron cyclotron assisted breakdown on Frascati Tokamak Upgrade. Nucl. Fusion 51(7), 073042 (2011)

    Article  ADS  Google Scholar 

  8. G. Jackson, T. Casper, T. Luce, D. Humphreys, J. Ferron, A. Hyatt et al., ITER startup studies in the DIII-D tokamak. Nucl. Fusion 48(12), 125002 (2008)

    Article  ADS  Google Scholar 

  9. J. Ongena, P. Monier-Garbet, W. Suttrop, P. Andrew, M. Bécoulet, R. Budny et al., Towards the realization on JET of an integrated H-mode scenario for ITER. Nucl. Fusion 44(1), 124 (2003)

    Article  ADS  Google Scholar 

  10. I.H. Hutchinson, Principles of plasma diagnostics. Plasma Phys. Control. Fusion 44(12), 2603 (2002)

    Article  ADS  Google Scholar 

  11. A. Qayyum, F. Deeba, M.U. Naseer, S. Ahmad, M. Javed, S. Hussain, A photodiode array and Langmuir probe for characterizing plasma in GLAST-III tokamak device. Measurement 125, 56–62 (2018)

    Article  Google Scholar 

  12. O. Van Hoey, Visible light measurements on the COMPASS tokamak. Faculty of Engineering Department of Applied Physics (2010)

  13. A. Qayyum, S. Ahmad, R. Khan, S. Hussain, F. Deeba, M. Javed et al., Triple-probe diagnostic measurements in plasma of GLAST spherical Tokamak. J. Fusion Energ. 35(2), 205–213 (2016)

    Article  Google Scholar 

  14. A. Gurevich, G. Milikh, R. Roussel-Dupre, Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys. Lett. A 165(5–6), 463–468 (1992)

    Article  ADS  Google Scholar 

  15. F.F. Chen, Introduction to Plasma Physics (Springer, Berlin, 2012)

    Google Scholar 

  16. S.L. Chen, T. Sekiguchi, Instantaneous direct-display system of plasma parameters by means of triple probe. J. Appl. Phys. 36(8), 2363–2375 (1965)

    Article  ADS  Google Scholar 

  17. C.D. Hodgman, S.C. Lind, Handbook of chemistry and physics. J. Phys. Colloid Chem. 53(7), 1139–1139 (1949). https://doi.org/10.1021/j150472a018

    Article  Google Scholar 

  18. O.W. Richardson, Thermionic phenomena and the laws which govern them. Nobel Lect. 12, 1929 (1929)

    Google Scholar 

  19. S. Hussain, A. Qayyum, Z. Ahmad, S. Ahmad, R. Khan, F. Deeba et al., Initial plasma formation in the GLAST-II spherical Tokamak. J. Fusion Energ. 35(3), 529–537 (2016)

    Article  Google Scholar 

  20. W. Choe, G.-C. Kwon, J. Kim, J. Kim, S.-J. Jeon, S. Huh, Simple microwave preionization source for ohmic plasmas. Rev. Sci. Instrum. 71(7), 2728–2732 (2000)

    Article  ADS  Google Scholar 

  21. Y. Tan, Z. Gao, L. Wang, W. Wang, L. Xie, X. Yang et al., Transient process of a spherical tokamak plasma startup by electron cyclotron waves. Nucl. Fusion 51(6), 063021 (2011)

    Article  ADS  Google Scholar 

  22. J. Jo, H. Lee, S. Kim, S. Kim, Y. An, Y. Hwang, Efficient pre-ionization by direct XB mode conversion in VEST. Phys. Plasmas 24(1), 012103 (2017)

    Article  ADS  Google Scholar 

  23. R. Khan, M. Nazir, A. Ali, S. Hussain, G. Vorobyev, Development of microwave pre-ionization source for GLAST tokamak. Fusion Eng. Des. 126, 10–14 (2018)

    Article  Google Scholar 

  24. Svoboda V, Grover O, Stockel J, Gryaznevich M, Voroblev G. Use of small Tokamak GOLEM as a test bed for application of high temperature superconductors in fusion devices. IAEA TECDOC Series, p. 58 (2016)

  25. A. Kuritsyn, M. Yamada, S. Gerhardt, H. Ji, R. Kulsrud, Y. Ren, Measurements of the parallel and transverse Spitzer resistivities during collisional magnetic reconnection. Phys. Plasmas 13(5), 055703 (2006)

    Article  ADS  Google Scholar 

  26. J. Wesson, D.J. Campbell, Tokamaks (Oxford University Press, Oxford, 2011)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Amrollahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, H.R., Amrollahi, R. First Results and Plasma Current Start-Up in Taban Tokamak. J Fusion Energ 38, 548–556 (2019). https://doi.org/10.1007/s10894-019-00227-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-019-00227-3

Keywords

Navigation