Advertisement

Magnetized Target Fusion with a Spherical Tokamak

  • Michel Laberge
Original Research

Abstract

With good confinement and relatively high beta (up to 40%), the spherical tokamak could be a suitable magnetized target. To illustrate this potential, the theoretical fusion yield from compressing a spherical tokamak adiabatically to fusion conditions is calculated. While it is found that the large amount of energy stored in the compressed toroidal field constrains the potential energy gain, a system can be designed to produce significant useful output by directly recovering a large fraction of the compression energy. With 80% energy recovery, an example system using 140 MJ of pressurized gas to compress the spherical tokamak plasma within a 2 m radius liquid metal flux conserver can produce a fusion yield of 140 MJ and a net output of 40 MJ per pulse. At ~ 1 Hz this would produce 40 MWelectric.

Keywords

Spherical tokamak Magnetized target fusion Magneto-inertial fusion General fusion 

References

  1. 1.
    R.L. Miller, R.A. Krakowski, Assessment of the Slowly-Imploding Liner (LINUS) Fusion Reactor Concept, in 4th ANS Topical Meeting on the Technology of Nuclear Fusion (1980)Google Scholar
  2. 2.
    P.J. Turchi, A.L. Cooper, R.D. Ford, D.J. Jenkins, R.L Burton, Review of the NRL Liner Implosion Program, in MegaGauss Physics and Technology (Plenum Press, New York, London, 1980), p. 375-386Google Scholar
  3. 3.
  4. 4.
    D.D. Ryutov, R.E. Siemon, Magnetized plasma configurations for fast liner implosions: a variety of possibilities. Comments Mod. Phys. 2C, 185–201 (2001)Google Scholar
  5. 5.
    T.R. Jarboe, Formation and steady-state sustainment of a tokamak by coaxial helicity injection. Fusion Technol. 15(1), 7–11 (1989)CrossRefGoogle Scholar
  6. 6.
    R. Siemon, I. Lindemuth, K. Schoenberg, Why magnetized target fusion offers a low-cost development path for fusion energy. Comments Plasma Phys. Controll. Fusion 18, 363–386 (1997)Google Scholar
  7. 7.
    M. Porkolab, High performance discharges and capabilities in alcator C-Mod. J. Fusion Energ. 15, 169 (1996).  https://doi.org/10.1007/BF02266931 ADSCrossRefGoogle Scholar
  8. 8.
    M. Greenwald, Density limits in toroidal plasmas. Plasma Phys. Control. Fusion 44, R27 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    L.C. Bernard, F.J. Helton, R.W. Moore, T.N. Todd, MHD beta limits: scaling laws and comparison with Doublet III data. Nucl. Fusion 23, 1475 (1983)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    R.J. La Haye et al., High beta tokamak operation in DIII-D limited at low density/collisionality by resistive tearing modes. Nucl. Fusion 37, 397 (1997)ADSCrossRefGoogle Scholar
  12. 12.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.General Fusion IncBurnabyCanada

Personalised recommendations