Advertisement

Magnetized Plasma Target for Plasma-Jet-Driven Magneto-Inertial Fusion

  • Scott C. Hsu
  • Samuel J. Langendorf
Original Research
  • 80 Downloads

Abstract

We identify the desired characteristics and parameters of a \(\beta > 1\) magnetized plasma, possibly with highly tangled, open field lines, that could be a suitable target to be compressed to fusion conditions by a spherically imploding plasma liner (Hsu et al. in IEEE Trans Plasma Sci 40:1287, 2012) formed by merging hypersonic plasma jets. This concept is known as plasma-jet-driven magneto-inertial fusion (PJMIF). We set requirements on the target and liner such that (a) compressional heating dominates over thermal transport in the target, and (b) magnetic amplification due to compression dominates over dissipation over the entire implosion. We also evaluate the requirements to avoid drift-instability-induced anomalous transport and current-driven anomalous resistivity in the target. Next, we describe possible approaches to create such a magnetized, \(\beta >1\) plasma target. Finally, assuming such a target can be created, we evaluate the feasibility of a proof-of-concept experiment using presently achievable plasma jets to demonstrate target compressional heating at a plasma-liner kinetic energy of \(\,\lesssim\, \,100\,{\text{kJ}}\) (a few hundred times below that needed in a PJMIF reactor).

Keywords

Plasma liners Plasma jets Magneto-inertial fusion 

Notes

Acknowledgements

We thank Y.C.F. Thio, I. Golovkin, X.-Z. Tang, and D. Ryutov for discussions and advice, and one of the anonymous referees for pointing out the possible relevance of the more pessimistic Rechester & Rosenbluth transport scaling in a stochastic magnetic field (compared to the Ryutov scaling).

Funding

Funding was provided by the U.S. Department of Energy under contract no. DE-AC52-06NA25396).

References

  1. 1.
    Y.C.F. Thio, E. Panarella, R.C. Kirkpatrick, C.E. Knapp, F. Wysocki, P. Parks, G. Schmidt, in Current Trends in International Fusion Research—Proceedings of the Second International Symposium, ed. by E. Panarella (NRC Canada, Ottawa, 1999), p. 113Google Scholar
  2. 2.
    S.C. Hsu, T.J. Awe, S. Brockington, A. Case, J.T. Cassibry, G. Kagan, S.J. Messer, M. Stanic, X. Tang, D.R. Welch, F.D. Witherspoon, IEEE Trans. Plasma Sci. 40, 1287 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    C.E. Knapp, R.C. Kirkpatrick, Phys. Plasmas 21, 070701 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    S.J. Langendorf, S.C. Hsu, Phys. Plasmas 24, 032704 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    I.R. Lindemuth, R.C. Kirkpatrick, Nucl. Fusion 23, 263 (1983)CrossRefGoogle Scholar
  6. 6.
    R.C. Kirkpatrick, I.R. Lindemuth, M.S. Ward, Fusion Technol. 27, 201 (1995)CrossRefGoogle Scholar
  7. 7.
    R.P. Drake, J.H. Hammer, C.W. Hartman, L.J. Perkins, D.D. Ryutov, Fusion Technol. 30, 310 (1996)CrossRefGoogle Scholar
  8. 8.
    I.R. Lindemuth, R.E. Siemon, Am. J. Phys. 77, 407 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    G.A. Wurden, S.C. Hsu, T.P. Intrator, T.C. Grabowski, J.H. Degnan, M. Domonkos, P.J. Turchi, E.M. Campbell, D.B. Sinars, M.C. Herrmann, R. Betti, B.S. Bauer, I.R. Lindemuth, R.E. Siemon, R.L. Miller, M. Laberge, M. Delage, J. Fusion Energ. 35, 69 (2016)CrossRefGoogle Scholar
  10. 10.
    C.E. Knapp, An implicit smooth particle hydrodynamic code. Ph.D. thesis, University of New Mexico, Albuquerque, NM (2000)Google Scholar
  11. 11.
    Y.C.F. Thio, J.T. Cassibry, T.E. Markusic, Pulsed electromagnetic acceleration of plasmas. in Paper AIAA-2002-3803, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2002)Google Scholar
  12. 12.
    J.T. Cassibry, Numerical modeling studies of a coaxial plasma accelerator as a standoff driver for magnetized target fusion. Ph.D. Dissertation, University of Alabama in Huntsville (2004)Google Scholar
  13. 13.
    J.T. Cassibry, Y.C.F. Thio, S.T. Wu, Phys. Plasmas 13, 053101 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Y.C.F. Thio, Magneto-inertial fusion: an emerging concept for inertial fusion and dense plasmas in ultrahigh magnetic fields, in Proceedings on Fifth International Conference in Inertial Fusion Sciences and Applications, Kobe, Japan, (2007). http://www.osti.gov/scitech/biblio/1159661
  15. 15.
    F.D. Witherspoon, A. Case, S.J. Messer, R. Bomgardner II, M.W. Phillips, S. Brockington, R. Elton, Rev. Sci. Instrum. 80, 083506 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    S.C. Hsu, J. Fusion Energ. 28, 246 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    S.C. Hsu, E.C. Merritt, A.L. Moser, T.J. Awe, S.J.E. Brockington, J.S. Davis, C.S. Adams, A. Case, J.T. Cassibry, J.P. Dunn, M.A. Gilmore, A.G. Lynn, S.J. Messer, F.D. Witherspoon, Phys. Plasmas 19, 123514 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    E.C. Merritt, A.L. Moser, S.C. Hsu, J. Loverich, M. Gilmore, Phys. Rev. Lett. 111, 085003 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    E.C. Merritt, A.L. Moser, S.C. Hsu, C.S. Adams, J.P. Dunn, A. Miguel Holgado, M.A. Gilmore, Phys. Plasmas 21, 055703 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    T.J. Awe, C.S. Adams, J.S. Davis, D.S. Hanna, S.C. Hsu, J.T. Cassibry, Phys. Plasmas 18, 072705 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    J.S. Davis, S.C. Hsu, I.E. Golovkin, J.J. MacFarlane, J.T. Cassibry, Phys. Plasmas 19, 102701 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    J.T. Cassibry, M. Stanic, S.C. Hsu, Phys. Plasmas 20, 032706 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    J.T. Cassibry, M. Stanic, S.C. Hsu, F.D. Witherspoon, S.I. Abarzhi, Phys. Plasmas 19, 052702 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    H. Kim, L. Zhang, R. Samulyak, P. Parks, Phys. Plasmas 20, 022704 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    S.C. Hsu, S.J. Langendorf, K.C. Yates, J.P. Dunn, S. Brockington, A. Case, E. Cruz, F.D. Witherspoon, M.A. Gilmore, J.T. Cassibry, R. Samulyak, P. Stoltz, K. Schillo, W. Shih, K. Beckwith, Y.C.F. Thio, IEEE Trans. Plasma Sci. 46, 1951 (2018)CrossRefGoogle Scholar
  26. 26.
    S.C. Hsu, Y.C.F. Thio, J. Fusion Energ. 37, 103 (2018)CrossRefGoogle Scholar
  27. 27.
    S.C. Hsu, A.L. Moser, E.C. Merritt, C.S. Adams, J.P. Dunn, S. Brockington, A. Case, M. Gilmore, A.G. Lynn, S.J. Messer, F.D. Witherspoon, J. Plasma Phys. 81, 345810201 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Laberge, S. Howard, D. Richardson, A. Froese, V. Suponitsky, M. Reynolds, D. Plant, in 2013 IEEE 25th Symposium on Fusion Engineering (SOFE) (2013), pp. 1–7.  https://doi.org/10.1109/SOFE.2013.6635495
  29. 29.
    T. Intrator, S.Y. Zhang, J.H. Degnan, I. Furno, C. Grabowski, S.C. Hsu, E.L. Ruden, P.G. Sanchez, J.M. Taccetti, M. Tuszewski, W.J. Waganaar, G.A. Wurden, Phys. Plasmas 11, 2580 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    J. Slough, G. Votroubek, C. Pihl, Nucl. Fusion 51, 053008 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    M.E. Cuneo, M.C. Herrmann, D.B. Sinars, S.A. Slutz, W.A. Stygar, R.A. Vesey, A.B. Sefkow, G.A. Rochau, G.A. Chandler, J.E. Bailey, J.L. Porter, R.D. McBride, D.C. Rovang, M.G. Mazarakis, E.P. Yu, D.C. Lamppa, K.J. Peterson, C. Nakhleh, S.B. Hansen, A.J. Lopez, M.E. Savage, C.A. Jennings, M.R. Martin, R.W. Lemke, B.W. Atherton, I.C. Smith, P.K. Rambo, M. Jones, M.R. Lopez, P.J. Christenson, M.A. Sweeney, B. Jones, L.A. McPherson, E. Harding, M.R. Gomez, P.F. Knapp, T.J. Awe, R.J. Leeper, C.L. Ruiz, G.W. Cooper, K.D. Hahn, J. McKenney, A.C. Owen, G.R. McKee, G.T. Leifeste, D.J. Ampleford, E.M. Waisman, A. Harvey-Thompson, R.J. Kaye, M.H. Hess, S.E. Rosenthal, M.K. Matzen, I.E.E.E. Trans, Plasma Sci. 40, 3222 (2012)CrossRefGoogle Scholar
  33. 33.
    M.R. Gomez, S.A. Slutz, A.B. Sefkow, D.B. Sinars, K.D. Hahn, S.B. Hansen, E.C. Harding, P.F. Knapp, P.F. Schmit, C.A. Jennings, T.J. Awe, M. Geissel, D.C. Rovang, G.A. Chandler, G.W. Cooper, M.E. Cuneo, A.J. Harvey-Thompson, M.C. Herrmann, M.H. Hess, O. Johns, D.C. Lamppa, M.R. Martin, R.D. McBride, K.J. Peterson, J.L. Porter, G.K. Robertson, G.A. Rochau, C.L. Ruiz, M.E. Savage, I.C. Smith, W.A. Stygar, R.A. Vesey, Phys. Rev. Lett. 113, 155003 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    D.D. Ryutov, Fusion Sci. Technol. 56, 1489 (2009)CrossRefGoogle Scholar
  35. 35.
    D.D. Ryutov, B.A. Remington, Plasma Phys. Control. Fusion 44, B407 (2002)CrossRefGoogle Scholar
  36. 36.
    D.D. Ryutov, J.O. Kane, A. Mizuta, M.W. Pound, B.A. Remington, Astrophys. Space Sci. 298, 183 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    F.D. Witherspoon, S. Brockington, A. Case, E. Cruz, M. Luna, Y.C.F. Thio, Bull. Am. Phys. Soc. 62, 324 (2017)Google Scholar
  38. 38.
    A.B. Rechester, M.N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978)ADSCrossRefGoogle Scholar
  39. 39.
    B.D.G. Chandran, S.C. Cowley, Phys. Rev. Lett. 80, 3077 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    B.J. Albright, B.D.G. Chandran, S.C. Cowley, M. Loh, Phys. Plasmas 8, 777 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    J.D. Huba, NRL Plasma Formulary (NRL, 2016)Google Scholar
  42. 42.
    A. El Nadi, M.N. Rosenbluth, Phys. Fluids 16, 2036 (1973)ADSCrossRefGoogle Scholar
  43. 43.
    D.D. Ryutov, Phys. Plasmas 9, 4085 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    S.I. Braginskii, in Reviews of Plasma Physics, vol. I, ed. by M.A. Leontovich (Consultants Bureau, New York, 1965), p. 205Google Scholar
  45. 45.
    R.D. McBride, S.A. Slutz, Phys. Plasmas 22, 052708 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    R.C. Davidson, N.T. Gladd, Phys. Fluids 18, 1327 (1975)ADSCrossRefGoogle Scholar
  47. 47.
    M. Yamada, Y. Ono, A. Hayakawa, M. Katsurai, F.W. Perkins, Phys. Rev. Lett. 65, 721 (1990)ADSCrossRefGoogle Scholar
  48. 48.
    Y. Ono, M. Inomoto, Y. Ueda, T. Matsuyama, T. Okazaki, Nucl. Fusion 39, 2001 (1999)ADSCrossRefGoogle Scholar
  49. 49.
    C.D. Cothran, A. Falk, A. Fefferman, M. Landreman, M.R. Brown, M.J. Schaffer, Phys. Plasmas 10, 1748 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    F.D. Witherspoon, S. Brockington, A. Case, S.J. Messer, L. Wu, R. Elton, S.C. Hsu, J.T. Cassibry, M.A. Gilmore, Bull. Am. Phys. Soc. 56, 311 (2011)Google Scholar
  51. 51.
    S. Li, H. Li, A modern code solving magneto-hydrodynamic or hydrodynamic equations. LANL Technical Report, LA-UR-03-8926 (2003)Google Scholar
  52. 52.
    K. Beckwith, S.A. Veitzer, S. McCormick, J. Ruge, L.N. Olson, J.C. Cahoun, IEEE Trans. Plasma Sci. 43, 957 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    B. Fryxell, K. Olson, P. Ricker, F.X. Timmes, M. Zingale, D.Q. Lamb, P. MacNeice, R. Rosner, J.W. Truran, H. Tufo, Astrophys. J. Suppl. Ser. 131, 273 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    C.B. Forest, K. Flanagan, M. Brookhard, M. Clark, C.M. Cooper, V. Désangles, J. Egedal, D. Endrizzi, I.V. Khalzov, H. Li, M. Miesch, J. Milhone, M. Nornberg, J. Olson, E. Peterson, F. Roseler, A. Schekochihin, O. Schmitz, R. Siller, A. Spitkovsky, A. Stemo, J. Wallace, D. Weisberg, E. Zweibel, J. Plasma Phys. 81, 345810501 (2015)CrossRefGoogle Scholar
  55. 55.
    D.R. Welch, T.C. Genoni, C. Thoma, N. Bruner, D.V. Rose, S.C. Hsu, Phys. Rev. Lett. 109, 225002 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    D.R. Welch, T.C. Genoni, C. Thoma, D.V. Rose, S.C. Hsu, Phys. Plasmas 21, 032704 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    K. Yates, S. Hsu, D. Montgomery, J. Dunn, S. Langendorf, B. Pollock, T. Johnson, D. Welch, C. Thoma, Bull. Am. Phys. Soc. 62, 394 (2017)Google Scholar
  58. 58.
    J.D. Sethian, K.A. Gerber, D.N. Spector, A.E. Robson, Phys. Rev. Lett. 41, 798 (1978)ADSCrossRefGoogle Scholar
  59. 59.
    S. Messer, A. Case, L. Wu, S. Brockington, F.D. Witherspoon, Phys. Plasmas 20, 032306 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    J.J. MacFarlane, I.E. Golovkin, P.R. Woodruff, J. Quant. Spectrosc. Radiat. Transf. 99, 381 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    J.R. Davies, D.H. Barnak, E.M. Campbell, P.Y. Chang, A.B. Sefkow, K.J. Peterson, D.B. Sinars, M.R. Weis, Phys. Plasmas 24, 062701 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations