Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee

Abstract

This document is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generate a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in “Fusion Energy Sciences: A Ten-Year Perspective (2015–2025)” [1]. The natural disruption immunity of the stellarator directly addresses “Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices” an area of critical importance for the US fusion energy sciences enterprise over the next decade. Another critical area of research “Strengthening our partnerships with international research facilities,” is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. This report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; “Burning Plasma Science: Foundations—Next-generation research capabilities”, and “Burning Plasma Science: Long pulse—Sustainment of Long-Pulse Plasma Equilibria” are proposed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Figures from [87] and [92]

Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    http://science.energy.gov/~/media/fes/pdf/program-documents/FES_A_Ten-Year_Perspective_2015-2025.pdf

  2. 2.

    A.H. Boozer, Phys. Fluids 26, 496 (1983)

    ADS  Article  Google Scholar 

  3. 3.

    H.E. Mynick, T.K. Chu, A.H. Boozer, Phys. Rev. Lett. 48, 322 (1982)

    ADS  Article  Google Scholar 

  4. 4.

    F.S.B. Anderson et al., Fusion Technol. 27(Suppl S), 273 (1995)

    Google Scholar 

  5. 5.

    M.C. Zarnstorff et al., Plasma Phys. Control. Fusion 43, A237 (2001)

    Article  Google Scholar 

  6. 6.

    A.H. Boozer, Phys. Fluids 26, 496 (1983)

    ADS  Article  Google Scholar 

  7. 7.

    J. Nührenberg, R. Zille, Phys. Lett. A 129, 113 (1988)

    ADS  Article  Google Scholar 

  8. 8.

    J.M. Canik et al., Phys. Plasmas 14, 056107 (2007)

    ADS  Article  Google Scholar 

  9. 9.

    J. Nührenberg, W. Lotz, S. Gori, in Theory of Fusion Plasmas, vol. 15, ed. by E. Sindoni, E. Tryon, J. Vaclavik (Editrice Copositori, Bologna, 1994)

    Google Scholar 

  10. 10.

    P.R. Garabedian, Phys. Plasmas 3, 2483 (1996)

    ADS  Article  Google Scholar 

  11. 11.

    H.E. Mynick, T.K. Chu, A.H. Boozer, Phys. Rev. Lett. 48, 322 (1982)

    ADS  Article  Google Scholar 

  12. 12.

    J. Nührenberg et al., Fusion Technol. 27(Suppl S), 71 (1995)

    Google Scholar 

  13. 13.

    M. Landreman, P.J. Catto, Phys. Plasmas 19, 056103 (2012)

    ADS  Article  Google Scholar 

  14. 14.

    L.S. Hall, B. McNamara, Phys. Fluids 18, 552 (1975)

    ADS  Article  Google Scholar 

  15. 15.

    D.A. Garren, A.H. Boozer, Phys. Fluids B 3, 2805 (1991)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    E. Strumberger, Nucl. Fusion 36, 891 (1996)

    ADS  Article  Google Scholar 

  17. 17.

    Y. Feng et al., Nucl. Fusion 46, 807 (2006)

    ADS  Article  Google Scholar 

  18. 18.

    G. Rewoldt, W.M. Tang, M.S. Chance, Phys. Fluids 25, 480 (1982)

    ADS  Article  Google Scholar 

  19. 19.

    G. Rewoldt, L.-P. Ku, W.M. Tang, W.A. Cooper, Phys. Plasmas 6, 4705 (1999)

    ADS  Article  Google Scholar 

  20. 20.

    F. Jenko, W. Dorland, M. Kotschenreuther, B.N. Rogers, Phys. Plasmas 7, 1904 (2000)

    ADS  Article  Google Scholar 

  21. 21.

    P. Xanthopoulos et al., Phys. Plasmas 16, 082303 (2009)

    ADS  Article  Google Scholar 

  22. 22.

    T. Watanabe, H. Sugama, Nucl. Fusion 46, 24 (2006)

    ADS  Article  Google Scholar 

  23. 23.

    M. Nunami, T. Watanabe, H. Sugama, Plasma Fusion Res. 5, 016 (2010)

    ADS  Article  Google Scholar 

  24. 24.

    W. Dorland, F. Jenko, M. Kotschenreuther, B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)

    ADS  Article  Google Scholar 

  25. 25.

    J.A. Baumgaertel, G.W. Hammett, D.R. Mikkelsen, Phys. Plasmas 20, 022305 (2013)

    ADS  Article  Google Scholar 

  26. 26.

    V. Kornilov, R. Kleiber, R. Hatzky, L. Villard, G. Jost, Phys. Plasmas 11, 3196 (2004)

    ADS  Article  Google Scholar 

  27. 27.

    D.A. Spong, I. Holod, in 14th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (Vienna, 1–4 September 2015)

  28. 28.

    A. Kendl, B.D. Scott, H. Wobig, Plasma Phys. Control. Fusion 42, L23 (2000)

    ADS  Article  Google Scholar 

  29. 29.

    G. Rewoldt, L.-P. Ku, W.M. Tang, Phys. Plasmas 12, 102512 (2005)

    ADS  Article  Google Scholar 

  30. 30.

    H. Mynick, P. Xanthopoulos, A. Boozer, Phys. Plasmas 16, 110702 (2009)

    ADS  Article  Google Scholar 

  31. 31.

    D.A. Spong, S.P. Hirshman, L.A. Berry, J.F. Lyon et al., Nucl. Fusion 41, 711 (2001)

    ADS  Article  Google Scholar 

  32. 32.

    H. Mynick, N. Pomphrey, P. Xanthopoulos, Phys. Rev. Lett. 105, 095004 (2010)

    ADS  Article  Google Scholar 

  33. 33.

    H. Mynick, N. Pomphrey, P. Xanthopoulos, Phys. Plasmas 18, 056101 (2011)

    ADS  Article  Google Scholar 

  34. 34.

    P. Xanthopoulos, H. Mynick, P. Helander, Yu. Turkin, F. Jenko et al., Phys. Rev. Lett. 113, 155001 (2014)

    ADS  Article  Google Scholar 

  35. 35.

    J. Proll, H. Mynick, P. Xanthopoulos, S. Lazerson, B. Faber, Plasma Phys. Control. Fusion 58, 014006 (2015)

    ADS  Article  Google Scholar 

  36. 36.

    M.J. Pueschel, B.J. Faber, J. Citrin, C.C. Hegna, P.W. Terry, D.R. Hatch, Phys. Rev. Lett. 116, 085001 (2016)

    ADS  Article  Google Scholar 

  37. 37.

    C.S. Pitcher, P.C. Stangeby, Plasma Phys. Control. Fusion 39, 779 (1997)

    ADS  Article  Google Scholar 

  38. 38.

    M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)

    ADS  Article  Google Scholar 

  39. 39.

    Y. Feng et al., Plasma Phys. Control. Fusion 53, 024009 (2011)

    ADS  Article  Google Scholar 

  40. 40.

    P.C. Stangeby, A.W. Leonard, Nucl. Fusion 51, 063001 (2011)

    ADS  Article  Google Scholar 

  41. 41.

    B. Lipschultz et al., Nucl. Fusion 56, 056007 (2016)

    ADS  Article  Google Scholar 

  42. 42.

    R.A. Pitts et al., J. Nucl. Mater. 438, S48 (2013)

    Article  Google Scholar 

  43. 43.

    D. Reiter et al., Plasma Phys. Control. Fusion 33, 1579 (1991)

    ADS  Article  Google Scholar 

  44. 44.

    J. Nuehrenberg, E. Strumberber, Contrib. Plasma Phys. 32, 204 (1992)

    ADS  Article  Google Scholar 

  45. 45.

    A.H. Boozer, J. Plasma Phys. 81, 515810606 (2015)

    Article  Google Scholar 

  46. 46.

    P.T. Lang et al., Nucl. Fusion 53, 00295515 (2013)

    Google Scholar 

  47. 47.

    P. Grigull et al., J. Nucl. Mater. 290, 1009 (2001)

    ADS  Article  Google Scholar 

  48. 48.

    T. Eich et al., Nucl. Fusion 53, 093031 (2013)

    ADS  Article  Google Scholar 

  49. 49.

    Y. Feng et al., Nucl. Fusion 46, 807 (2006)

    ADS  Article  Google Scholar 

  50. 50.

    A. Mollen et al., J. Phys. Conf. Ser. 561, 012012 (2014)

    Article  Google Scholar 

  51. 51.

    W. Stacey, Phys. Plasmas 20, 092508 (2013)

    ADS  Article  Google Scholar 

  52. 52.

    T. Estrada et al., Plasma Phys. Control. Fusion 51, 124015 (2009)

    ADS  Article  Google Scholar 

  53. 53.

    P. Grigull et al., Plasma Phys. Control. Fusion 43, A175 (2001)

    Article  Google Scholar 

  54. 54.

    The Report of the “Fusion Energy Sciences Workshop on Plasma Wall Interaction”. http://science.energy.gov/~/media/fes/pdf/workshop-reports/2016/PMI_fullreport_21Aug2015.pdf

  55. 55.

    H.E. Mynick, A.H. Boozer, L.P. Ku, Phys. Plasmas 13, 064505 (2006)

    ADS  Article  Google Scholar 

  56. 56.

    M. McMillan, S.A. Lazerson, Plasma Phys. Control. Fusion 56, 095019 (2014)

    ADS  Article  Google Scholar 

  57. 57.

    D. Spong, S. Hirshman, J. Whitson, Phys. Plasmas 5, 1752 (1998)

    ADS  Article  Google Scholar 

  58. 58.

    M. Drevlak, J. Geiger, P. Helander, Y. Turkin, Nucl. Fusion 54, 073002 (2014)

    ADS  Article  Google Scholar 

  59. 59.

    S. Murakami, H. Yamada, M. Sasao, M. Isobe et al., Fusion Sci. Technol. 46, 241 (2004)

    Article  Google Scholar 

  60. 60.

    V.V. Nemov, S.V. Kasilov, W. Kernbichler, G.O. Leitold, Phys. Plasmas 12, 112507 (2005)

    ADS  Article  Google Scholar 

  61. 61.

    V.V. Nemov, S.V. Kasilov, W. Kernbichler, M.F. Heyn, Phys. Plasmas 6, 4622 (1999)

    ADS  Article  Google Scholar 

  62. 62.

    H.E. Mynick, A.H. Boozer, L.P. Ku, Phys. Plasmas 13, 64505 (2006)

    Article  Google Scholar 

  63. 63.

    W. Lotz, P. Merkel, J. Nuhrenberg, E. Strumberger, Plasma Phys. Control. Fusion 34, 1037 (1992)

    ADS  Article  Google Scholar 

  64. 64.

    D. Spong, S. Hirshman, L. Berry et al., Nucl. Fusion 41, 711 (2001)

    ADS  Article  Google Scholar 

  65. 65.

    W. Heidbrink et al., Nucl. Fusion 48, 084001 (2008)

    ADS  Article  Google Scholar 

  66. 66.

    C.S. Collins, W.W. Heidbrink, M.E. Austin, G. Kramer et al., Phys. Rev. Lett. 116, 095001 (2016)

    ADS  Article  Google Scholar 

  67. 67.

    M. Podestà, M. Gorelenkova, R.B. White, Plasma Phys. Control. Fusion 56, 055003 (2014)

    ADS  Article  Google Scholar 

  68. 68.

    D.C. Pace et al., Nucl. Fusion 57, 014001 (2017)

    ADS  Article  Google Scholar 

  69. 69.

    M.A. Van Zeeland et al., Nucl. Fusion 56, 112007 (2016)

    ADS  Article  Google Scholar 

  70. 70.

    Y.M. Jeon et al., (M3) 16th International Workshop on H-Mode Physics (2017)

  71. 71.

    K. Nagaoka et al., Nucl. Fusion 53, 073034 (2013)

    ADS  Article  Google Scholar 

  72. 72.

    G.J. Kramer et al., Plasma Phys. Control. Fusion 58, 085003 (2016)

    ADS  Article  Google Scholar 

  73. 73.

    N. Gorelenkov et al., Nucl. Fusion 43, 228 (2003)

    ADS  Article  Google Scholar 

  74. 74.

    M.A. Van Zeeland et al., Nucl. Fusion 49, 065003 (2009)

    ADS  Article  Google Scholar 

  75. 75.

    A. Bortolon, W.W. Heidbrink, G. Kramer, et al., in Invited talk, 41st EPS Conference, Berlin, Germany, June 23–27 (2014)

  76. 76.

    D. Spong, Phys. Plasmas 22, 055602 (2015)

    ADS  Article  Google Scholar 

  77. 77.

    A. Komori et al., Plasma Phys. Control. Fusion 45, 671 (2003)

    ADS  Article  Google Scholar 

  78. 78.

    A. Weller et al., Nucl. Fusion 49, 065016 (2009)

    ADS  Article  Google Scholar 

  79. 79.

    A. Reiman et al., Nucl. Fusion 47, 572 (2007)

    ADS  Article  Google Scholar 

  80. 80.

    J. Krommes, A. Reiman, Phys. Plasmas 16, 072308 (2009)

    ADS  Article  Google Scholar 

  81. 81.

    Y. Narushima et al., Nucl. Fusion 51, 083030 (2011)

    ADS  Article  Google Scholar 

  82. 82.

    C.C. Hegna, Nucl. Fusion 51, 113017 (2011)

    ADS  Article  Google Scholar 

  83. 83.

    C.C. Hegna, J.D. Callen, Phys. Plasmas 1, 3135 (1994)

    ADS  Article  Google Scholar 

  84. 84.

    M.D. Pandya et al., Phys. Plasmas 22, 110702 (2015)

    ADS  Article  Google Scholar 

  85. 85.

    K. Toi et al., Phys. Plasmas 12, 020701 (2005)

    ADS  Article  Google Scholar 

  86. 86.

    S.R. Hudson et al., Plasma Phys. Control. Fusion 46, 869 (2004)

    ADS  Article  Google Scholar 

  87. 87.

    R. Burhenn et al., Nucl. Fusion 49, 065005 (2009)

    ADS  Article  Google Scholar 

  88. 88.

    J.M. Garcia-Regana et al., Plasma Phys. Control. Fusion 55, 074008 (2013)

    ADS  Article  Google Scholar 

  89. 89.

    P. Helander et al., Plasma Phys. Control. Fusion 54, 124009 (2012)

    ADS  Article  Google Scholar 

  90. 90.

    M.R. Wade, W.A. Houlberg, L.R. Baylor, Phys. Rev. Lett. 84, 282 (2000)

    ADS  Article  Google Scholar 

  91. 91.

    H. Yamada et al., Nucl. Fusion 45, 1684 (2005)

    ADS  Article  Google Scholar 

  92. 92.

    L. Giannone et al., Plasma Phys. Control. Fusion 42, 603 (2000)

    ADS  Article  Google Scholar 

  93. 93.

    M. Kobayashi et al., Contrib. Plasma Phys. 46, 527 (2006)

    ADS  Article  Google Scholar 

  94. 94.

    S. Sudo, Plasma Phys. Control. Fusion 58, 043001 (2016)

    ADS  Article  Google Scholar 

  95. 95.

    K. McCormick et al., Phys. Rev. Lett. 89, 015001 (2002)

    ADS  Article  Google Scholar 

  96. 96.

    K. Ida et al., Phys. Plasmas 16, 056111 (2009)

    ADS  Article  Google Scholar 

  97. 97.

    M. Yoshinuma et al., Nucl. Fusion 49, 062002 (2009)

    ADS  Article  Google Scholar 

  98. 98.

    D.R. Mikkelsen et al., Phys. Plasmas 21, 082302 (2014)

    ADS  Article  Google Scholar 

  99. 99.

    D.A. Spong, Phys. Plasmas 12, 056114 (2005)

    ADS  Article  Google Scholar 

  100. 100.

    M. Landreman, H.M. Smith, A. Mollén, P. Helander, Phys. Plasmas 21, 042503 (2014)

    ADS  Article  Google Scholar 

  101. 101.

    A. Mollén et al., Phys. Plasmas 22, 112508 (2015)

    ADS  Article  Google Scholar 

  102. 102.

    N.A. Pablant et al., Plasma Phys. Control. Fusion 58, 045004 (2016)

    ADS  Article  Google Scholar 

  103. 103.

    J.M. Garcia-Regana, et al. arXiv:1501.03967 (2015)

  104. 104.

    M.L. Reinke et al., Plasma Phys. Control. Fusion 54, 045004 (2012)

    ADS  Article  Google Scholar 

  105. 105.

    C. Hidalgo et al., Nucl. Fusion 45, S266 (2005)

    Article  Google Scholar 

  106. 106.

    R. L. Miller, et al., The Modular Stellarator Reactor: A Fusion Power Plant, LANL Report LA-9737-MS (July 1983)

  107. 107.

    I.N. Sviatoslavsky et al., IEEE Trans. Plasma Sci. PS-9(4), 163–172 (1981)

    ADS  Article  Google Scholar 

  108. 108.

    G. Böhme, et al, Fusion Power Associates Report FPA-87-2 (1987). http://fti.neep.wisc.edu/pdf/fpa87-2.pdf

  109. 109.

    R.L. Miller and The SPPS Team, The Stellarator Power Plant Study, University of California San Diego Report UCSD-ENG-004 (1997)

  110. 110.

    F. Najmabadi, A.R. Raffray, the ARIES-CS Team, Fusion Sci. Technol. 54, 655 (2008)

    Article  Google Scholar 

  111. 111.

    C.D. Beidler, et al, in Proceedings of 13th International Stellarator Workshop, Canberra, Australia, Feb. 25 to March 1 (2002)

  112. 112.

    A. Sagara et al., Fusion Eng. Des. 83, 1690 (2008)

    Article  Google Scholar 

  113. 113.

    L.A. El-Guebaly et al., Chapter in Book: Fusion Energy and Power: Applications, Technologies and Challenges (NOVA Science Publishers, Inc., New York, 2015). ISBN 978-1-63482-579-5

    Google Scholar 

  114. 114.

    DAGMC Users Guide, University of Wisconsin-Madison Fusion Technology Institute (2008). https://trac.cae.wisc.edu/trac/svalinn/wiki/DAGMCUsersGuide

  115. 115.

    L. El-Guebaly et al., Fusion Sci. Technol. 54, 747 (2008)

    Article  Google Scholar 

  116. 116.

    L.M. Waganer, K.T. Slattery, J.C. Waldrop III, Fusion Sci. Technol. 54, 878 (2008)

    Article  Google Scholar 

  117. 117.

    L.M. Waganer et al., Fusion Sci. Technol. 54, 787 (2008)

    Article  Google Scholar 

  118. 118.

    T. Brown, et al, in 2015 IEEE 26th Symposium on Fusion Engineering (SOFE). https://doi.org/10.1109/sofe.2015.7482426

  119. 119.

    L.P. Ku et al., Fusion Sci. Technol. 54, 673 (2008)

    Article  Google Scholar 

  120. 120.

    L.P. Ku, A. Boozer, Nucl. Fusion 50, 125005 (2010)

    ADS  Article  Google Scholar 

  121. 121.

    T. Klinger et al., Fusion Eng. Des. 88, 461 (2013)

    Article  Google Scholar 

  122. 122.

    L. El-Guabaly et al., Fusion Eng. Des. 54, 747 (2008)

    Google Scholar 

  123. 123.

    S. Hirshman, Phys. Rev. Lett. 80, 528 (1998)

    ADS  Article  Google Scholar 

  124. 124.

    N. Pomphrey et al., Nucl. Fusion 41, 339 (2001)

    ADS  Article  Google Scholar 

  125. 125.

    P. Merkel et al., Nucl. Fusion 27, 867 (1987)

    Article  Google Scholar 

  126. 126.

    M. Landreman, A.H. Boozer, Phys. Plasmas 23, 032506 (2016)

    ADS  Article  Google Scholar 

  127. 127.

    The US community stellarator initiative proposed to FESAC in 2014 may be found at http://advprojects.pppl.gov/home/stellarator-r-d/stellarator-community-initiative-2014

  128. 128.

    The US community stellarator initiative proposed to FESAC in 2014 may be found at http://advprojects.pppl.gov/home/stellarator-r-d/stellarator-community-initiative-2014

  129. 129.

    http://science.energy.gov/~/media/fes/pdf/program-documents/FES_A_Ten-Year_Perspective_2015-2025.pdf

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David A. Gates.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gates, D.A., Anderson, D., Anderson, S. et al. Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee. J Fusion Energ 37, 51–94 (2018). https://doi.org/10.1007/s10894-018-0152-7

Download citation

Keywords

  • Stellarator Research
  • Fusion Energy Sciences (FES)
  • Stellarator Program
  • Last Closed Flux Surface (LCFS)
  • Island Divertor