Skip to main content
Log in

Physical and Numerical Model for Calculation of Ensembles of Trajectories of Dust Particles in a Tokamak

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The calculation of the trajectories and main physical parameters (e.g. mass, temperature, electric potential) of an ensemble of several representative dust particles has recently emerged as an important problem in the physics of tokamaks, with the aim of studying their role as a source of impurities in a thermonuclear plasma and their effects in the interaction with the first wall. The physical problem despite its apparent simple goals, is fraught with difficulties related to various subtle physical processes and requires the development of specific accurate numerical tools. In this work, the key physics aspects of the problem of dust tracking in a high temperature tokamak plasma are addressed from the concrete point of view of developing adequate and consistent numerical tools for their treatment. The basic elements and the rationale of the numerical code DUST-TRACKing (DUSTTRACK) developed for it are outlined. To describe the performance and potential of DUSTTRACK, a “realistic” output of the code is finally showed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Federici, H. Wuerz, G. Janeschitz, R. Tivey, Fusion Eng. Des. 61–62, 81 (2002)

    Article  Google Scholar 

  2. J.P. Sharpe, D.A. Petti, H.-W. Bartels, Fusion Eng. Des. 63–64, 153 (2002)

    Article  Google Scholar 

  3. S.I. Krasheninnikov, R.D. Smirnov, D.L. Rudakov, Plasma Phys. Control. Fusion 53(8), 083001 (2011)

    Article  ADS  Google Scholar 

  4. S. Ratynskaia, L. Vignitchouk, P. Tolias, I. Bykov, H. Bergsåker, A. Litnovsky, N. den Harder, E. Lazzaro, Nucl. Fusion 53(12), 123002 (2013)

    Article  ADS  Google Scholar 

  5. M. Sertoli, J.C. Flannegan, A. Cackett, E. Hodille, P. de Vries, I.H. Coffey, B. Sieglin, S. Marsen, S. Brezinsek, G.F. Matthews, J.W. Coenen, JET-EFDA Contributors. Phys. Scr. T159, 014014 (2014)

  6. M. Sertoli, J.C. Flanagan, M. Bacharis, O. Kardaun, A. Jarvinen, G.F. Matthews, S. Brezinsek, D. Harting, A. Cackett, E. Hodille, I.H. Coffey, E. Lazzaro, T. Pütterich, J. Nucl. Mater. 463, 837 (2015)

    Article  ADS  Google Scholar 

  7. J.C. Flanagan, M. Sertoli, M. Bacharis, G.F. Matthews, P.C. de Vries, A. Widdowson, I.H. Coffey, G. Arnoux, B. Sieglin, S. Brezinsek, J.W. Coenen, S. Marsen, T. Craciunescu, A. Murari, D. Harting, A. Cackett, E. Hodille, Plasma Phys. Control. Fusion 57(1), 014037 (2015)

    Article  ADS  Google Scholar 

  8. S.J. Piet, A. Costley, G. Federici, F. Heckendorn, R. Little, in 17th IEEE/NPSS Symposium on Fusion Engineering, vol. 1, (1997), pp. 167–170

  9. V. Rohde, M. Balden, T. Lunt, The ASDEX Upgrade Team, Phys. Scr. T138, 014024 (2009)

  10. AYu. Pigarov, S.I. Krasheninnikov, T.K. Soboleva, T.D. Rognlien, Phys. Plasmas 12(12), 122508 (2005)

    Article  ADS  Google Scholar 

  11. R.D. Smirnov, A.Y. Pigarov, M. Rosenberg, S.I. Krasheninnikov, D.A. Mendis, Plasma Phys. Control. Fusion 49(4), 347 (2007)

    Article  ADS  Google Scholar 

  12. M. Bacharis, M. Coppins, J.E. Allen, Phys. Rev. E 82, 026403 (2010)

    Article  ADS  Google Scholar 

  13. M. Bacharis, M. Coppins, J.E. Allen, Phys. Plasmas 17(4), 042505 (2010)

    Article  ADS  Google Scholar 

  14. E. Lazzaro, I. Proverbio, F. Nespoli, S. Ratynskaia, C. Castaldo, U. de Angelis, M. De Angeli, J.-P. Banon, L. Vignitchouk, Plasma Phys. Control. Fusion 54(12), 124043 (2012)

    Article  ADS  Google Scholar 

  15. L. Vignitchouk, P. Tolias, S. Ratynskaia, Plasma Phys. Control. Fusion 56(9), 095005 (2014)

    Article  ADS  Google Scholar 

  16. S. Ratynskaia, P. Tolias, A. Shalpegin, L. Vignitchouk, M. De Angeli, I. Bykov, K. Bystrov, S. Bardin, F. Brochard, D. Ripamonti, N. den Harder, G. De Temmerman, J. Nucl. Mater. 463, 877 (2015)

    Article  ADS  Google Scholar 

  17. A. Uccello, G. Gervasini, F. Ghezzi, E. Lazzaro, M. Bacharis, J. Flanagan, G. Matthews, A. Järvinen, M. Sertoli, J.E.T. Contributors, Phys. Plasmas 23, 102506 (2016)

    Article  ADS  Google Scholar 

  18. EQDSK Format. https://fusion.gat.com/theory/efitgeqdsk

  19. R. Simonini, G. Corrigan, G. Radford, J. Spence, A. Taroni, Contrib. Plasma Phys. 34(2–3), 368 (1994)

    Article  ADS  Google Scholar 

  20. A.E. Jaervinen, M. Groth, M. Airila, P. Belo, M. Beurskens, S. Brezinsek, M. Clever, G. Corrigan, S. Devaux, P. Drewelow, T. Eich, C. Giroud, D. Harting, A. Huber, S. Jachmich, K. Lawson, B. Lipschultz, G. Maddison, C. Maggi, T. Makkonen, C. Marchetto, S. Marsen, G.F. Matthews, A.G. Meigs, D. Moulton, M.F. Stamp, S. Wiesen, M. Wischmeier, JET-EFDA Collaborators. J. Nucl. Mater. 463, 135 (2015)

  21. P. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (Taylor & Francis Group, New York, 2000)

    Book  Google Scholar 

  22. A. Baron-Wiechec, E. Fortuna-Zaleśna, J. Grzonka, M. Rubel, A. Widdowson, C. Ayres, J.P. Coad, C. Hardie, K. Heinola, G.F. Matthews, Nucl. Fusion 55(11), 113033 (2015)

    Article  ADS  Google Scholar 

  23. J.E. Allen, Phys. Scr. 45(5), 497 (1992)

    Article  ADS  Google Scholar 

  24. P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics. Series in Plasma Physics and Fluid Dynamics (CRC Press, Boca Raton, 2001)

    Book  Google Scholar 

  25. S. Dushman, Rev. Mod. Phys. 2, 381 (1930)

    Article  ADS  Google Scholar 

  26. A.H.W. Beck, Thermionic Valves (Cambridge University Press, Cambridge, 2015)

    Google Scholar 

  27. R.A. Langley, J. Bohdansky, W. Eckstein, P. Mioduszewski, J. Roth, E. Taglauer, E.W. Thomas, H. Verbeek, K.L. Wilson, Nucl. Fusion 24(S1), S9 (1984)

    Article  Google Scholar 

  28. E.W. Thomas, (IAEA, Vienna, 1984), p. 94

  29. M.S. Chung, T.E. Everhart, J. Appl. Phys. 45(2), 707 (1974)

    Article  ADS  Google Scholar 

  30. ITER Technical Basis, ITER EDA Documentation Series No 24 (IAEA, Vienna, 2002)

  31. R. Marek, J. Straub, Int. J. Heat Mass Tranf. 44(1), 39 (2001)

    Article  Google Scholar 

  32. A.T. Dinsdale, Calphad 15(4), 317 (1991)

    Article  Google Scholar 

  33. D.R. Lide, CRC Handbook of Chemistry and Physics, vol. 80 (Taylor & Francis, London, 1999)

    Google Scholar 

  34. T.E. Stringer, Nucl. Fusion 12(6), 689 (1972)

    Article  Google Scholar 

  35. I.H. Hutchinson, Plasma Phys. Control. Fusion 48(2), 185 (2006)

    Article  ADS  Google Scholar 

  36. S.A. Khrapak, A.V. Ivlev, S.K. Zhdanov, G.E. Morfill, Phys. Plasmas 12(4), 042308 (2005)

    Article  ADS  Google Scholar 

  37. C. Thornton, Z. Ning, Powder Technol. 99(2), 154 (1998)

    Article  Google Scholar 

  38. W. Goldsmith, Impact: The Theory and Physical Behaviour of Colliding Solids (E. Arnold, London, 1960)

    MATH  Google Scholar 

  39. X. Li, P.F. Dunn, R.M. Brach, Aerosol Sci. Technol. 33(4), 376 (2000)

    Article  Google Scholar 

  40. R. Bridson, R. Fedkiw, J. Anderson, ACM Trans. Graph. 21(3), 594 (2002)

    Article  Google Scholar 

  41. M.C. van Beek, C.C.M. Rindt, J.G. Wijers, A.A. van Steenhoven, Powder Technol. 165(2), 53 (2006)

    Article  Google Scholar 

  42. S.V. Klinkov, V.F. Kosarev, M. Rein, Aerosp. Sci. Technol. 9(7), 582 (2005)

    Article  Google Scholar 

  43. D. Shepard, in Proceedings of the 1968 23rd ACM National Conference (ACM, New York, NY, 1968), pp. 517–524

  44. G.F. Counsell, J.W. Connor, S.K. Erents, A.R. Field, S.J. Fielding, B. La Bombard, K.M. Morel, J. Nucl. Mater. 266–269, 91 (1999)

    Article  Google Scholar 

  45. P.N. Brown, A.C. Hindmarsh, L.R. Petzold, SIAM J. Sci. Comput. 15, 1467 (1994)

    Article  Google Scholar 

  46. L.R. Petzold, Scientific Computing (Montreal, Quebec, 1982) (IMACS, New Brunswick, NJ, 1983)

    Google Scholar 

  47. S. Nordbeck, B. Rystedt, BIT 7(1), 39 (1967)

    Article  Google Scholar 

  48. S.W. Sloan, Adv. Eng. Softw. (1978) 7(1), 45 (1985)

    Article  Google Scholar 

  49. Cosine Distribution. http://www.iue.tuwien.ac.at/phd/ertl/node100.html

  50. G.F. Matthews, J. Nucl. Mater. 438, Supplement, S2 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been carried out at the Istituto di Fisica del Plasma IFP-CNR. The views and opinions expressed herein do not necessarily respect those of IFP-CNR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Uccello.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gervasini, G., Lazzaro, E. & Uccello, A. Physical and Numerical Model for Calculation of Ensembles of Trajectories of Dust Particles in a Tokamak. J Fusion Energ 36, 25–39 (2017). https://doi.org/10.1007/s10894-016-0119-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-016-0119-5

Keywords

Navigation