Skip to main content

Measurement of Radiative Collapse in 2.2 kJ PF: Achieving High Energy Density (HED) Conditions in a Small Plasma Focus

Abstract

Radiative collapse in the plasma focus (PF) pinch creates extreme high energy density (HED) in the laboratory. The Pease–Braginskii current is that current flowing in a hydrogen pinch which is just large enough for bremsstrahlung to balance Joule heating; this threshold value being 1.4 MA. For high-Z gases undergoing strong line-radiation the radiation-cooled threshold current is considerably lowered. Recent work applied to a MJ PF has revealed that even if a threshold current is exceeded there is a condition that the characteristic depletion time of the pinch energy by radiation should be of the order of the pinch time in order for strong radiative collapse to be observed, thus explaining why no radiative collapse may be expected in deuterium; and also in helium; even in multi-MA PF devices. This paper extends the computation of depletion times to a kJ PF, the INTI PF showing that in the INTI PF only a small reduction in radius ratio may be anticipated in Ne whilst in Ar, Kr and Xe strong radiative collapse is expected. Two useful Tables are obtained applicable to kJ PF devices, one of reduced Pease–Braginskii currents in various high-Z gases and the other of corresponding characteristic depletion times. Two earlier papers using the Lee code had already demonstrated that radiative collapse occurs in plasma focus operated in high-Z gases. However in those papers computation could only be carried out up to a cut-off radius set at 0.01 of anode radius. Thus as shown in this paper most of the radiative compression was not computed or measured. This paper reports the measurement of the pinch trajectory in Kr by the fitting of a measured current waveform using the code with the cut-off radius successfully removed, so that the fitting fully follows the compression to its minimum radius and beyond to the rebound of the trajectory. The measured current waveform shows radiative collapse to a minimum radius ratio of 0.0014 or 0.0013 cm. Ion density reached 3.7 × 1026 m−3; and an immense burst of radiation is emitted with peak power of 1012 W, radiating 30 J in 50 ps, during the time of peak radiative compression. The energy density at peak compression is 4 × 1013 J m−3 or 40 kJ mm−3. This is the first time such a measurement has been made; and indicates that even in a kJ plasma focus, such a HED state is achieved.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    M.G. Haines, Plasma Phys. Control. Fusion 53, 093001 (2011)

    ADS  Article  Google Scholar 

  2. 2.

    W.H. Bennett, Phys. Rev. 45, 890 (1934)

    ADS  Article  Google Scholar 

  3. 3.

    S. Lee, Plasma Phys. 25(5), 571 (1983)

    ADS  Article  Google Scholar 

  4. 4.

    M.G. Haines, Philos. Trans. R. Soc. Lond. A300, 649 (1981)

    ADS  Article  Google Scholar 

  5. 5.

    S. Lee, Aust. J. Phys. 36, 891 (1983)

    ADS  Article  Google Scholar 

  6. 6.

    R.S. Pease, Proc. Phys. Soc. Lond. 70, 11 (1957)

    ADS  Article  Google Scholar 

  7. 7.

    S.I. Braginskii, Zh. Eksp. Teor. Fiz. 33, 645 (1957)

    Google Scholar 

  8. 8.

    A.E. Robson, Phys. Fluids B 1(9), 1834–1842 (1989)

    ADS  Article  Google Scholar 

  9. 9.

    N.A.D. Khattak, Anomalous Heating (LHDI) (2011), http://www.plasmafocus.net/IPFS/modelpackage/File3Appendix.pdf

  10. 10.

    K.N. Koshelev, Y.V. Sidelnikov, Nucl. Instrum. Methods Phys. Res. B 9, 204–205 (1985)

    Article  Google Scholar 

  11. 11.

    S. Lee, S.H. Saw, Jalil Ali, J. Fusion Energ 32, 42–49 (2013)

    ADS  Article  Google Scholar 

  12. 12.

    M. Akel, S. Lee, J. Fusion Energ 32, 111–116 (2013)

    ADS  Article  Google Scholar 

  13. 13.

    S. Lee, S.H. Saw, M. Akel, J. Ali, H.-J. Kunze, P. Kubes, M. Paduch, Conditions for radiative cooling and collapse in the plasma focus illustrated with numerical experiments on the PF1000. IEEE Trans. Plasma Sci. 44(2), 165–173 (2016). doi:10.1109/TPS.2015.2497269

    ADS  Article  Google Scholar 

  14. 14.

    S. Lee, J. Fusion Energ 33, 319–335 (2014)

    Article  Google Scholar 

  15. 15.

    S. Lee, Radiative Dense Plasma Focus Computation Package: RADPF (2015), http://www.plasmafocus.net; http://www.intimal.edu.my/school/fas/UFLF/(archivalwebsites)

  16. 16.

    T.Y. Tou, S. Lee, K.H. Kwek, IEEE Trans. Plasma Sci. 17, 311–315 (1989)

    ADS  Article  Google Scholar 

  17. 17.

    S.P. Moo, C.K. Chakrabarty, S. Lee, IEEE Trans. Plasma Sci. 19, 515–519 (1991)

    ADS  Article  Google Scholar 

  18. 18.

    D.E. Potter, Nucl. Fusion 18, 813–823 (1978)

    ADS  Article  Google Scholar 

  19. 19.

    A. Serban, S. Lee, Plasma Sources Sci. Technol. 6, 78 (1997)

    ADS  Article  Google Scholar 

  20. 20.

    M.H. Liu, X.P. Feng, S.V. Springham, S. Lee, IEEE Trans. Plasma Sci. 26, 135 (1998)

    ADS  Article  Google Scholar 

  21. 21.

    S. Lee, P. Lee, G. Zhang, X. Feng, V.A. Gribkov, M. Liu, A. Serban, T. Wong, IEEE Trans. Plasma Sci. 26, 1119 (1998)

    ADS  Article  Google Scholar 

  22. 22.

    S. Lee, T.Y. Tou, S.P. Moo, M.A. Eissa, A.V. Gholap, K.H. Kwek, S. Mulyodrono, A.J. Smith, Suryadi, W. Usada, M. Zakaullah, Am. J. Phys. 56, 62 (1988)

    ADS  Article  Google Scholar 

  23. 23.

    D. Wong, P. Lee, T. Zhang, A. Patran, T.L. Tan, R.S. Rawat, S. Lee, Plasma Sources Sci. Technol. 16, 116 (2007)

    ADS  Article  Google Scholar 

  24. 24.

    V. Siahpoush, M.A. Tafreshi, S. Sobhanian, S. Khorram, Plasma Phys. Control. Fusion 47, 1065 (2005)

    ADS  Article  Google Scholar 

  25. 25.

    L. Soto, P. Silva, J. Moreno, G. Silvester, M. Zambra, C. Pavez, L. Altamirano, H. Bruzzone, M. Barbaglia, Y. Sidelnikov, W. Kies, Braz. J. Phys. 34, 1814 (2004)

    ADS  Article  Google Scholar 

  26. 26.

    H. Acuna, F. Castillo, J. Herrera, A. Postal, International Conference on Plasma Science, Conference Record, 3–5 June (1996), pp. 127

  27. 27.

    C. Moreno, V. Raspa, L. Sigaut, R. Vieytes, A. Clausse, Appl. Phys. Lett. 89(9), 091502–091503 (2006)

    ADS  Article  Google Scholar 

  28. 28.

    A.E. Abdou, M.I. Ismail, A.E. Mohamed, S. Lee, S.H. Saw, R. Verma, IEEE Trans. Plasma Sci. 40(10), 2741–2744 (2012)

    ADS  Article  Google Scholar 

  29. 29.

    S. Lee, IEEE Trans. Plasma Sci. 19, 912–919 (1991)

    ADS  Article  Google Scholar 

  30. 30.

    S.H. Saw, M. Akel, P.C.K. Lee, S.T. Ong, S.N. Mohamad, F.D. Ismail, N.D. Nawi, K. Devi, R.M. Sabri, A.H. Bajian, J. Ali, S. Lee, J. Fusion Energ 31, 411–417 (2012)

    ADS  Article  Google Scholar 

  31. 31.

    S.H. Saw, P.C.K. Lee, R.S. Rawat, S. Lee, IEEE Trans. Plasma Sci. 37, 1276–1282 (2009)

    ADS  Article  Google Scholar 

  32. 32.

    S. Lee, R.S. Rawat, P. Lee, S.H. Saw, J. Appl. Phys. 106, 023309 (2009)

    ADS  Article  Google Scholar 

  33. 33.

    S.H. Saw, S. Lee, Energy Power Eng. 2(1), 65–72 (2010)

    Article  Google Scholar 

  34. 34.

    M. Akel, Sh Al-Hawat, S.H. Saw, S. Lee, J. Fusion Energ 29(3), 223–231 (2010)

    ADS  Article  Google Scholar 

  35. 35.

    M. Akel, S. Lee, S.H. Saw, IEEE Trans. Plasma Sci. 40, 3290 (2012)

    ADS  Article  Google Scholar 

  36. 36.

    S. Lee, S.H. Saw, R.S. Rawat, P. Lee, A. Talebitaher, A.E. Abdou, P.L. Chong, F. Roy, A. Singh, D. Wong, K. Devi, IEEE Trans. Plasma Sci. 39, 3196–3202 (2011)

    ADS  Article  Google Scholar 

  37. 37.

    S. Lee, S.H. Saw, J. Fusion Energ 27, 292–295 (2008)

    ADS  Article  Google Scholar 

  38. 38.

    S. Lee, S.H. Saw, L. Soto, S.V. Springham, S.P. Moo, Plasma Phys. Control. Fusion 51, 075006 (2009)

    ADS  Article  Google Scholar 

  39. 39.

    S. Lee, S.H. Saw, Appl. Phys. Lett. 92, 021503 (2008)

    ADS  Article  Google Scholar 

  40. 40.

    S. Lee, P. Lee, S.H. Saw, R.S. Rawat, Plasma Phys. Control. Fusion 50, 065012 (2008)

    ADS  Article  Google Scholar 

  41. 41.

    S. Lee, Plasma Phys. Control. Fusion 50, 10500 (2008)

    Google Scholar 

  42. 42.

    S. Lee, Appl. Phys. Lett. 95, 151503 (2009)

    ADS  Article  Google Scholar 

  43. 43.

    S. Lee, S.H. Saw, J. Fusion Energ 31, 603–610 (2012)

    ADS  Article  Google Scholar 

  44. 44.

    S. Lee, S.H. Saw, P.C.K. Lee, R.S. Rawat, H. Schmidt, Appl. Phys. Lett. 92, 111501 (2008)

    ADS  Article  Google Scholar 

  45. 45.

    S.H. Saw, S. Lee, F. Roy, P.L. Chong, V. Vengadeswaran, A.S.M. Sidik, Y.W. Leong, A. Singh, Rev. Sci. Instrum. 81, 053505 (2010)

    ADS  Article  Google Scholar 

  46. 46.

    S. Lee, S.H. Saw, R.S. Rawat, P. Lee, R. Verma, A. Talebitaher, S.M. Hassan, A.E. Abdou, M. Ismail, A. Mohamed, H. Torreblanca, S. Al Hawat, M. Akel, P.L. Chong, F. Roy, A. Singh, D. Wong, K.K. Devi, J. Fusion Energ 31, 198–204 (2012)

    ADS  Article  Google Scholar 

  47. 47.

    S. Lee, S.H. Saw, P.C.K. Lee, R.S. Rawat, K. Devi, J. Fusion Energ 32, 50–55 (2013)

    ADS  Article  Google Scholar 

  48. 48.

    S.H. Saw, R.S. Rawat, P. Lee, A. Talebitaher, A.E. Abdou, P.L. Chong, F. Roy Jr, J. Ali, S. Lee, IEEE Trans. Plasma Sci. 41(11), 3166–3172 (2013)

    ADS  Article  Google Scholar 

  49. 49.

    S. Lee, S.H. Saw, A.E. Abdou, H. Torreblanca, J. Fusion Energ 30, 277–282 (2011)

    ADS  Article  Google Scholar 

  50. 50.

    R.A. Behbahani, F.M. Aghamir, J. Appl. Phys. 111(4), 043304–043305 (2012)

    ADS  Article  Google Scholar 

  51. 51.

    R.A. Behbahani, F.M. Aghamir, Phys. Plasmas 18, 103302 (2011)

    ADS  Article  Google Scholar 

  52. 52.

    S. Lee, S.H. Saw, Phys. Plasmas 19, 12703 (2012)

    Article  Google Scholar 

  53. 53.

    S. Lee, S.H. Saw, Phys. Plasmas 20, 062702 (2013)

    ADS  Article  Google Scholar 

  54. 54.

    S. Lee, S.H. Saw, Special edition on “fusion energy”. Energies 3, 711–737 (2010)

    Article  Google Scholar 

  55. 55.

    S.H. Saw, S. Lee, Int. J. Energy Res. 35, 81–88 (2011)

    Article  Google Scholar 

  56. 56.

    S. Lee, S.H. Saw, Int. J Energy Res. 36(15), 1366–1374 (2012)

    Article  Google Scholar 

  57. 57.

    S. Lee, S.H. Saw, P. Lee, R.S. Rawat, Plasma Phys. Control. Fusion 51, 105013 (2009)

    ADS  Article  Google Scholar 

  58. 58.

    V.A. Gribkov, A. Banaszak, B. Bienkowska, A.V. Dubrovsky, I. Ivanova-Stanik, L. Jakubowski, L. Karpinski, R.A. Miklaszewski, M. Paduch, M.J. Sadowski, M. Scholz, A. Szydlowski, K. Tomaszewski, J. Phys. D Appl. Phys. 40, 3592–3607 (2007)

    ADS  Article  Google Scholar 

  59. 59.

    S. Lee, A. Serban, IEEE Trans. Plasma Sci. 24(3), 1101–1105 (1996)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. H. Saw.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saw, S.H., Lee, S. Measurement of Radiative Collapse in 2.2 kJ PF: Achieving High Energy Density (HED) Conditions in a Small Plasma Focus. J Fusion Energ 35, 702–708 (2016). https://doi.org/10.1007/s10894-016-0095-9

Download citation

Keywords

  • Plasma focus numerical experiments
  • Radiation cooling
  • Radiation collapse
  • Plasma focus radiation enhancement
  • Plasma focus HED