Skip to main content

Advertisement

Log in

Role of Nitrogen Pressure on the Structural and Mechanical Properties of ZrON Composite Films Deposited by Plasma Focus Device

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Polycrystalline zirconium oxy-nitride (P-ZrON) composite films are deposited on Zr substrates by plasma focus device. The focusing efficiency of plasma focus is maximum at 1.5 mbar nitrogen pressure (NP) due to more intense signal of high voltage probe. The P-ZrON composite films are deposited for 25 focus shots at different NP. The XRD patterns confirm the evolution of ZrN (111), Zr3N4 (230), Zr3N4 (320), Zr3N4 (140), Zr3N4 (340) and ZrO2 (200) diffraction planes. The peak intensity of different diffraction planes and their broadening are associated with increasing NP. The (N + O)/Zr atomic ratio’s are found to be 0.78, 0.88, 1.31, 0.66 and 0.55 at 0.5, 1.0, 1.5, 2.0 and 2.5 mbar NP respectively. The variation in crystallite size of different planes and strain transformation observed in various planes are attributed to varying ion energy fluxes which are associated with the increase of NP. The lattice parameter of ZrN is found to be 0.461 nm at 0.5 mbar NP which is decreased to 0.457 nm at 1.5 mbar NP. The weight fractions of ZrN, Zr3N4 and ZrO2 phases deposited at 2.5, 2 and 1.5 mbar NP are found to 30.5, 28.5 and 41 % respectively. The SEM microstructures reveal that the size and shape of nano-particles and the formation of complicated network of nano-wires (diameter = ~ 55 nm) and nano-combs are associated with increasing NP. The AFM images show the maximum rms surface roughness of P-ZrON composite film when deposited at 1.5 mbar NP. The micro-hardness (8623 ± 0.95 MPa) of P-ZrON composite film deposited at 1.5 mbar NP is found to be four times the micro-hardness of virgin Zr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.D. Man, J.H. Wang, Z.B. Ma, C.X. Wang, Surf. Coat. Technol. 171, 241 (2002)

    Article  Google Scholar 

  2. L.A. Dobrzañski, L.W. Zukowska, Arch. Mater. Sci. Eng. 28, 621 (2007)

    Google Scholar 

  3. L.E. Toth, Transition Metal Carbides and Nitrides (Academic Press, New York, 1971)

    Google Scholar 

  4. G. Lopez, M.H. Staia, Surf. Coat. Technol. 200, 2092 (2005)

    Article  Google Scholar 

  5. J. Deng, J. Liu, Z. Ding, M. Niu, Mater. Des. 29, 1828 (2008)

    Article  Google Scholar 

  6. U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, Surf. Coat. Technol. 41, 191 (1990)

    Article  Google Scholar 

  7. L.V. Leaven, M.N. Alias, R.B. Own, Surf. Coat. Technol. 53, 25 (1992)

    Article  Google Scholar 

  8. S. Horita, M. Kobayashi, H. Akahori, T. Hata, Surf. Coat. Technol. 66, 318 (1994)

    Article  Google Scholar 

  9. L.E. Toth, Transition Metal Carbides and Nitrides (Academic Press, New York, 1971)

    Google Scholar 

  10. P. Panjan, B. Navinsek, A. Zabkar, D. Mandrino, J. Fiser, Thin Solid Films 228, 233 (1993)

    Article  ADS  Google Scholar 

  11. E. Kelesoglu, C. Mitterer, M.K. Kazmanli, M. Urgen, Surf. Coat. Technol. 116, 133 (1999)

    Article  Google Scholar 

  12. E. Budke, J.K. Hesse, H. Maidhof, H. Schussler, Surf. Coat. Technol. 112, 108 (1999)

    Article  Google Scholar 

  13. I. Valov, D. Stoychev, T. Marinova, Electrochim. Acta 47, 4419 (2002)

    Article  Google Scholar 

  14. I. Espitia-Cabrera, H. Orozco-Hernández, R. Torres-Sánchez, M.E. Contreras-García, P. Bartolo-Pérez, L. Martínez, Mater. Lett. 58, 191 (2003)

    Article  Google Scholar 

  15. S.K. Yen, Mater. Chem. Phys. 63, 256 (2000)

    Article  Google Scholar 

  16. X. Pang, I. Zhitomirsky, M. Niewczas, Surf. Coat. Technol. 195, 138 (2005)

    Article  Google Scholar 

  17. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)

    Article  ADS  Google Scholar 

  18. T. Nguyen, E. Djurado, Solid State Ion 138, 191 (2001)

    Article  Google Scholar 

  19. V. Rigato, A. Patelli, G. Maggioni, S. Restello, S. Vezzu, K.E. Cooke, D.G. Teer, D. Boscarino, A. Figueras, L.E. Depero, E. Bontempi, Surf. Coat. Technol. 174–175, 266–272 (2003)

    Article  Google Scholar 

  20. L. Cunha, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, Ph Goudeau, J.P. Rivière, Surf. Coat. Technol. 200, 2917–2922 (2006)

    Article  Google Scholar 

  21. P. Carvalho, F. Vaz, L. Rebouta, S. Carvalho, L. Cunha, Ph Goudeau, J.P. Rivière, E. Alves, A. Cavaleiro, Surf. Coat. Technol. 200, 748–752 (2005)

    Article  Google Scholar 

  22. D. Valerini, M.A. Signore, L. Tapfer, E. Piscopiello, U. Galietti, A. Rizzo, Thin Solid Films 538, 42 (2013)

    Article  ADS  Google Scholar 

  23. M.A. Signore, A. Rizzo, L. Tapfer, E. Piscopiello, L. Capodieci, A. Cappello, Thin Solid Films 518, 1943 (2010)

    Article  ADS  Google Scholar 

  24. S. Heiroth, R. Ghisleni, T. Lippert, J. Michler, A. Wokaun, Acta Mater. 59, 2330 (2011)

    Article  Google Scholar 

  25. S. PalDey, S.C. Deevi, Mater. Sci. Eng. A342, 58 (2003)

    Article  Google Scholar 

  26. A. Rizzo, M.A. Signore, L. Mirenghi, T.D. Luccio, Thin Solid Films 517, 5956 (2009)

    Article  ADS  Google Scholar 

  27. B. Karlsson, R.P. Shimshoch, B.O. Seraphin, J.O. Haygarth, Sol. Energy Mater. 7, 401 (1983)

    Article  ADS  Google Scholar 

  28. M.B. Lee, M. Kawasaki, M. Yoshimoto, M. Kumagai, H. Koinuma, Jpn. J. Appl. Phys. 33, 6308 (1994)

    Article  ADS  Google Scholar 

  29. S. Lee, T.Y. Tou, S.P. Moo, M.A. Eissa, A.V. Gholap, K.W. Kwek, S. Mulyodrono, A.J. Smith, S. Suryadi, W. Usada, M. Zakaullah, Am. J. Phys. 56, 62 (1988)

    Article  ADS  Google Scholar 

  30. R. Ahmad, M. Sadiq, S. Hussain, M. Shafiq, M. Zakaullah, A. Waheed, Rev. Sci. Instrum. 77, 013504 (2006)

    Article  ADS  Google Scholar 

  31. H. Bhuyan, M. Favre, E. Valderrama, H. Chuaqui, E. Wyndham, J. Phys. D Appl. Phys. 39, 3596 (2006)

    Article  ADS  Google Scholar 

  32. R.S. Rawat, M.P. Srivastava, S. Tandon, A. Mansingh, Phys. Rev. B 47, 4858 (1993)

    Article  ADS  Google Scholar 

  33. R.S. Rawat, P. Arun, A.G. Videshwar, Y.L. Lam, P. Lee, M.H. Liu, S. Lee, A.C.H. Huan, Mater. Res. Bull. 35, 477 (2000)

    Article  Google Scholar 

  34. R.S. Rawat, P. Arun, A.G. Videshwar, P. Lee, S. Lee, J. Appl. Phys. 95, 7725 (2004)

    Article  ADS  Google Scholar 

  35. R.S. Rawat, P. Lee, T. White, L. Ling, S. Lee, Surf. Coat. Technol. 138, 159 (2001)

    Article  Google Scholar 

  36. M. Hassan, A. Qayyum, R. Ahmad, G. Murtaza, M. Zakaullah, J. Phys. D Appl. Phys. 40, 769 (2007)

    Article  ADS  Google Scholar 

  37. I.A. Khan, M. Hassan, R. Ahmad, A. Qayyum, G. Murtaza, M. Zakaullah, R.S. Rawat, Thin Solid Films 516, 8255 (2008)

    Article  ADS  Google Scholar 

  38. I.A. Khan, M. Hassan, R. Ahmad, G. Murtaza, M. Zakaullah, R.S. Rawat, P. Lee, Int. J. Mod. Phys. B 22, 3941 (2008)

    Article  ADS  Google Scholar 

  39. I.A. Khan, M. Hassan, T. Hussain, R. Ahmad, M. Zakaullah, R.S. Rawat, Appl. Surf. Sci. 255, 6132 (2009)

    Article  ADS  Google Scholar 

  40. I.A. Khan, R.S. Rawat, R. Verma, G. Macharaga, R. Ahmad, J. Cryst. Growth 317, 98 (2011)

    Article  ADS  Google Scholar 

  41. I.A. Khan, R.S. Rawat, R. Ahmad, M.A.K. Shahid, Chin. Phys. B 22, 127306 (2013)

    Article  Google Scholar 

  42. I.A. Khan, R.S. Rawat, R. Verma, G. Macharaga, R. Ahmad, Z.A. Umar, M.A.K. Shahid, Plasma Sci. Technol 15, 1127 (2013)

    Article  ADS  Google Scholar 

  43. I.A. Khan, R.S. Rawat, R. Ahmad, M.A.K. Shahid, Appl. Surf. Sci. 288, 304 (2014)

    Article  ADS  Google Scholar 

  44. R.S. Rawat, IEEE Trans. Plasma Sci. 41, 701 (2013)

    Article  ADS  Google Scholar 

  45. B.B. Nayak, B.S. Acharya, S.R. Mohanty, T.K. Borthakur, H. Bhuyan, Surf. Coat. Technol. 145, 8 (2001)

    Article  Google Scholar 

  46. S. Lee, T.Y. Tou, S.P. Moo, M.A. Eissa, A.V. Gholap, K.W. Kwek, S. Mulyodrono, A.J. Smith, W. Suryadi, M. Zakaullah, Am. J. Phys. 56, 62 (1988)

    Article  ADS  Google Scholar 

  47. S. Lee, S.H. Saw, Phys. Plasmas 19, 112703 (2012)

    Article  ADS  Google Scholar 

  48. P. Choi, C. Deeney, H. Herold, C.S. Wong, Laser Part. Beams 8, 469 (1990)

    Article  ADS  Google Scholar 

  49. J.E.E. Baglin, R.T. Hodgson, W.K. Chu, J.M. Neri, D.A. Hammer, L.J. Chen, Nucl. Instrum. Methods 192, 169 (1981)

    Article  Google Scholar 

  50. I. Bertalot, H. Herold, Phys. Lett. Part A 79, 389 (1980)

    Article  ADS  Google Scholar 

  51. M. Sadowski, H. Schmidt, H. Herold, Phys. Lett. Part A 83, 435 (1981)

    Article  ADS  Google Scholar 

  52. I.A. Khan, R.S. Rawat, R. Ahmad, M.A.K. Shahid, Chin. Phys. B 22, 127306 (2013)

    Article  Google Scholar 

  53. S. Nunomura, K. Koga, M. Shitarani, Jpn. J. Appl. Phys. Part II 44, L1509 (2005)

    Article  ADS  Google Scholar 

  54. H. Kelly, A. Lepone, A. Marquez, IEEE Trans. Plasma Sci. 26, 113 (1998)

    Article  ADS  Google Scholar 

  55. I.A. Khan, R.S. Rawat, R. Verma, G. Macharaga, R. Ahmad, J. Cryst. Growth 317, 98 (2011)

    Article  ADS  Google Scholar 

  56. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, New-Jersey, 2001), p. 388

    Google Scholar 

  57. R.S. Rawat, P. Arun, A.G. Vedeshwar, P. Lee, S. Lee, J. Appl. Phys. 95, 7725 (2004)

    Article  ADS  Google Scholar 

  58. V.N. Gurarie, P.H. Otsuka, D.N. Jamieson, S. Prawer, Nucl. Instrum. Methods Phys. Res. B 242, 421 (2006)

    Article  ADS  Google Scholar 

  59. E. Djurado, P. Bouvier, G. Lucazeau, J. Solid State Chem. 149, 399 (2000)

    Article  ADS  Google Scholar 

  60. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater. 62, 105 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This study has been partially supported by the Higher Education Commission, Pakistan and partially supported by the NIE/NTU, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I.A., Ikhlaq, U., Farid, A. et al. Role of Nitrogen Pressure on the Structural and Mechanical Properties of ZrON Composite Films Deposited by Plasma Focus Device. J Fusion Energ 34, 1284–1296 (2015). https://doi.org/10.1007/s10894-015-9956-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-015-9956-x

Keywords

Navigation