Skip to main content

Simulations and Experiments to Reach Numerical Multiphase Informations for Security Analysis on Large Volume Vacuum Systems Like Tokamaks

Abstract

Dust re-suspension as a consequences of loss of vacuum accident (LOVA) or loss of coolant accident (LOCA) situations inside a nuclear fusion plant (ITER-like) is an important issue for the workers’ safety and for the security of the plant. The dust size expected inside tokamaks like ITER is of the order of microns (0.1–1000 μm). Analysis of the thermo fluid-dynamics and transport phenomena involved during an accidental pressurization transitory is necessary in order to set up and operated tokamaks with careful consideration of the potential risks. Computational fluid dynamics (CFD) study of LOVA scenario is a challenging task for today numerical methods and models because it involves 3D large vacuum volumes, multiphase flows ranging from highly supersonic to nearly incompressible and heat transfer simultaneously. Present work deals with development and experimental validation of CFD model, which simulates the complex thermo fluid-dynamic field and gives some indication about internal hazardous dust mobilization phenomena during vessel filling at near vacuum conditions, for supporting first instant of LOVA safety analysis. The research activity had been carried out in the framework of EURATOM–ENEA Association—University of Rome Tor Vergata Quantum Electronics Plasma Physics and Materials Research Group.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

References

  1. 1.

    R. Toschi, Fusion Eng. Des. 36, 1–8 (1997)

    Article  Google Scholar 

  2. 2.

    A.V. Chankin et al., J. Nucl. Mater. 668, 290–293 (2001)

    Google Scholar 

  3. 3.

    S.K. Erents, Fusion 42, 905 (2000)

    Article  Google Scholar 

  4. 4.

    N. Asakura, Phys. Rev. Lett. 84, 3093 (2000)

    Article  ADS  Google Scholar 

  5. 5.

    S.J. Piet, G. Federici, ITER Rep. S 81 RI 13 96-06-28 W 1.4. (1996)

  6. 6.

    J.P. Sharpe, D.A. Petti, H.-W. Bartels, Fusion Eng. Des. 63–64, 153–163 (2002)

    Article  Google Scholar 

  7. 7.

    J. Winter, Phys. Plasmas 7, 3862–3866 (2000)

    Article  ADS  Google Scholar 

  8. 8.

    T. Honda et al., Fusion Eng. Des. 47, 361–375 (2000)

    Article  Google Scholar 

  9. 9.

    E. Eberta, J. Raeder, Fusion Eng. Des. 17, 307–312 (1991)

    Article  Google Scholar 

  10. 10.

    K. Matsuki et al., Fusion Eng. Des. 81, 1347–1351 (2006)

    Article  Google Scholar 

  11. 11.

    J.P. Van Dorsselaere et al., Fusion Eng. Des. 84, 1905–1911 (2009)

    Article  Google Scholar 

  12. 12.

    P. Gaudio, A. Malizia, I. Lupelli, in Proceeding of international conference on mathematical models for engineering science, 134–147 (2010)

  13. 13.

    M. Benedetti et al., Fusion Eng. Des. 88, 2665–2668 (2013)

    Article  Google Scholar 

  14. 14.

    C. Bellecci et al., Fusion Eng. Des. 86, 2774–2778 (2011)

    Article  Google Scholar 

  15. 15.

    C. Bellecci et al., Nucl. Fusion 51, 053017 (2011)

    Article  ADS  Google Scholar 

  16. 16.

    C. Bellecci et al., Fusion Eng. Des. 86, 330–340 (2011)

    Article  Google Scholar 

  17. 17.

    M. Benedetti et al., in Proceedings of the 2nd international conference on FLUIDSHEAT’11 TAM’11. In Proceedings of the 2nd international conference on FLUIDSHEAT’11 TAM’11, 142–147 (2011)

  18. 18.

    C. Bellecci et al., in Proceedings of the 37th EPS conference on plasma physics 34, 703–706 (2010)

  19. 19.

    P. Gaudio, A. Malizia, I. Lupelli, in Proceedings of the international conference on mathematical models for engineering science (MMES’10), (MMES’10), 134–147 (2010)

  20. 20.

    C. Bellecci et al., in 36th EPS conference on plasma physics 33, 266–269 (2009)

  21. 21.

    C. Bellecci et al., in 35th EPS conference on Plasma Physics 32, P-1.175 (2008)

  22. 22.

    ITER Joint Central Team, General Safety and Security Report (GSSR) G 84 RI 1 01-07-09 R 1.0. (IAEA, 2001), https://fusion.gat.com/iter/iter-fdr/final-report-sep-2001/Plant_Assembly_Documents_%28PADs%29/Generic_Site_Safety_Report_GSSR/GSSR_09_ExtHazAssmnt.pdf. Accessed 6 Feb 2015

  23. 23.

    T. Pinna et al., Fusion Eng. Des. 85, 1410–1415 (2010)

    Article  Google Scholar 

  24. 24.

    C.F.X. Ansys, Solver theory guide (ANSYS, Inc., Canonsburg, 2009)

    Google Scholar 

  25. 25.

    A.K. Majumdar, Generalized unsteady solution of isentropic and isothermal pressurization process (NASA-CR 204244, Huntsville, 1990)

    Google Scholar 

  26. 26.

    G. Van Wylen, L. Sonntag, Fundamentals of classical thermodynamics (Wiley, New Jersey, 1976)

    Google Scholar 

  27. 27.

    Peter V. Nielsen, F. Allard, H.B. Awbi, L. Davidson, A. Schälin, Fluidodinamica Computazionale (Dario Flaccoro Editore, Italy, 2009)

    Google Scholar 

  28. 28.

    A. Quarteroni, Modellistica numerica per problemi differenziali (Springer, Berlin, 2008)

    Book  Google Scholar 

  29. 29.

    F. Thompson, B.K. Soni, N.P. Weatherill, Handbook of grid generation (CRC Press LLC, Florida, 1999)

    MATH  Google Scholar 

  30. 30.

    H.S. Mukunda, Direct simulation of high-speed mixing layers (NASA Technical Paper 3186, 1992)

  31. 31.

    P. Incropera, Fundamentals of heat and mass transfer, 7th edn. (New Jersey, Wiley, 2012)

    Google Scholar 

  32. 32.

    D. Chiappini, Numerical analysis of multiphase flows through the lattice Boltzmann method (PhD Thesis, Department of Industrial Engineering, University of Rome Tor Vergata, 2010)

  33. 33.

    E.D. Fatnes, Numerical simulations of the flow and plugging behaviour of hydrate particles (Department of Physics and Technology, University of Bergen, 2010)

  34. 34.

    D. Pfleger, Chem. Eng. 54, 5091–5099 (1999)

    Article  Google Scholar 

  35. 35.

    C.J. Chen, S.Y. Jaw, Fundamental of turbulence modeling (CRC Press, Florida, 1997)

    Google Scholar 

  36. 36.

    D.C. Wilcox, Turbulence modeling for CFD (DCW Industries, La Canada, 1994)

    Google Scholar 

  37. 37.

    R.A. Andersson, Fluid dynamics for engineers (Cambridge University Press, Cambridge, 2012)

  38. 38.

    S. Crist, P.M. Sherman, Study of highly underexpanded sonic jet (AIAA Journal, New York, 1966)

    Google Scholar 

  39. 39.

    C.D. Wilcox, Multiscale model for turbulent flows (AIAA 24th Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, 1986)

  40. 40.

    A. Malizia et al., Fusion Eng. Des. (2014). doi:10.1016/j.fusengdes.2014.01.014

    Google Scholar 

  41. 41.

    A. Malizia et al., Adv. Mater. Sci. Eng. (2014). doi:10.1155/2014/201831

    Google Scholar 

  42. 42.

    Lupelli et al., Fusion Eng. Des. (2014). doi:10.1016/j.fusengdes.2014.03.064

    Google Scholar 

Download references

Acknowledgments

We want to acknowledge Quantum Electronics Plasma Physics and Materials (QEPM) Research Group (Department of Industrial Engineering, University of Rome Tor Vergata) and the researchers involved in safety and security at ENEA FUS TECH (Frascati, Rome).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Malizia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lupelli, I., Malizia, A., Richetta, M. et al. Simulations and Experiments to Reach Numerical Multiphase Informations for Security Analysis on Large Volume Vacuum Systems Like Tokamaks. J Fusion Energ 34, 959–978 (2015). https://doi.org/10.1007/s10894-015-9905-8

Download citation

Keywords

  • CFD
  • Fusion
  • LOVA
  • Multiphase
  • Nuclear
  • Security