Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Laser Shadowgraphic Study of the Influence of Krypton-Seeding, Switch Synchronization and Electrode Geometry on Plasma Dynamic in Plasma Focus Device

  • 133 Accesses

  • 3 Citations

Abstract

Laser shadowgraphy has been used to investigate the plasma sheath dynamics in a miniature plasma focus device (FMPF-3, 14 kV/235 J). The occurrence of magneto-hydro-dynamics instabilities are compared for pure deuterium versus deuterium–krypton admixture operation, over the range of gas pressures 2–12 mbar. A cathode-less geometry was also tested to study the influence of cathode configuration on current sheath formation and compression. The average neutron yield, measured using 3He proportional counters, is compared for different geometries and gas pressures. The synchronization of the four pseudo-spark-gap switches was found to be a major factor influencing the plasma sheath dynamics and neutron yield. To make a fair comparison of operation with different gas pressures or admixture proportions, the level of switch synchronization must be in the same range. Laser shadowgraphs of early stage dynamics show that poorly synchronized discharges result in asymmetric plasma sheath formation, and asymmetries in the accelerated sheath typically persist till the end of the final compression.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    R. Verma, R.S. Rawat, P. Lee, S.V. Springham, T.L. Tan, J. Fusion Energ. 32(1), 2–10 (2013)

  2. 2.

    S.M.P. Kalaiselvi, T.L. Tan, A. Talebitaher, P. Lee, R.S. Rawat, Phys. Lett. A 377, 1290–1296 (2013)

  3. 3.

    S.M.P. Kalaiselvi, T.L. Tan, A. Talebitaher, P. Lee, R.S. Rawat, Phys. Lett. A 378, 804–809 (2014)

  4. 4.

    R. Verma, P. Lee, S. Lee, S.V. Springham, T.L. Tan, R.S. Rawat, M. Krishnan, Appl. Phys. Lett. 93, 101501 (2008)

  5. 5.

    R. Verma, R.S. Rawat, P. Lee, S. Lee, S.V. Springham, T.L. Tan, M. Krishnan, Phys. Lett. A 373, 2568–2571 (2009)

  6. 6.

    S. Lee, S.H. Saw, J. Ali, J. Fusion Energ. 32, 42–49 (2013)

  7. 7.

    S. Lee, Aust. J. Phys. 35, 891–895 (1983)

  8. 8.

    S.V. Springham, A. Talebitaher, P.M.E. Shutler, S. Lee, R.S. Rawat, P. Lee, Appl. Phys. Lett. 101, 114104 (2012)

  9. 9.

    P.M.E. Shutler, S.V. Springham, A. Talebitaher, Nucl. Instr. Methods Phys. Res. Sect. A 709, 129–142 (2013)

  10. 10.

    Y. Yamada, Y. Kitagawa, I. Tsuda, M. Yokoyama, J. Phys. Soc. Jpn. 49, 433 (1980)

  11. 11.

    S. Lee, M.A. Alabraba, A.V. Gholap, S. Kumar, K.H. Kwek, M. Nisar, R.S. Rawat, J. Singh, IEEE Trans. Plasma Sci. 18(6), 1028–1032 (1990)

  12. 12.

    L. Soto, C. Pavez, F. Castillo, F. Veloso, J. Moreno, S.K.H. Auluck, Phys. Plasmas 21(7), 072702 (2014)

  13. 13.

    K.N. Mitrofanov, V.I. Krauz, P. Kubes, M. Scholz, M. Paduch, E. Zielinska, Plasma Phys. Rep. 40(8), 623–639 (2014)

  14. 14.

    T. Zhang, X. Lin, K.A. Chandra, T.L. Tan, S.V. Springham, A. Patran, P. Lee, S. Lee, R.S. Rawat, Plasma Sour. Sci. Technol. 14(1), 368–374 (2005)

  15. 15.

    H. Krompholz, W. Neff, F. Ruhl, K. Schonbach, G. Herziger, Phys. Lett. A 77, 246 (1980)

  16. 16.

    W. Kies, Plasma Phys. Contr. Fusion 28, 1645 (1986)

  17. 17.

    M. Lu, M. Han, T. Yang, C. Luo, T. Miyamoto, IEEE Trans. Plasma Sci. 29, 973 (2001)

Download references

Acknowledgments

This study was supported by AcRF Tier 1 research Grant No. RP1/11RSR provided by Nanyang Technological University, Singapore.

Author information

Correspondence to R. S. Rawat.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Talebitaher, A., Kalaiselvi, S.M.P., Springham, S.V. et al. Laser Shadowgraphic Study of the Influence of Krypton-Seeding, Switch Synchronization and Electrode Geometry on Plasma Dynamic in Plasma Focus Device. J Fusion Energ 34, 794–801 (2015). https://doi.org/10.1007/s10894-015-9888-5

Download citation

Keywords

  • Plasma focus device
  • Laser shadowgraphy
  • Plasma dynamic
  • Switches’ synchronization
  • Admixture gas