Abstract
We discuss the possible impacts of a new magnetized liner inertial fusion concept on magneto-inertial fusion approaches to fusion energy. Experiments in the last 1.5 years have already shown direct evidence of magnetic flux compression, a highly magnetized fusing fuel, significant compressional heating, a compressed cylindrical fusing plasma, and significant fusion yield. While these exciting results demonstrate several key principles behind magneto-inertial fusion, more work in the coming years will be needed to demonstrate that such targets can scale to ignition and high yield. We argue that justifying significant investment in pulsed inertial fusion energy beyond target development should require well-understood, significant fusion yields to be demonstrated in single-shot experiments. We also caution that even once target ideas and fusion power plants have been demonstrated, historical trends suggest it would still be decades before fusion could materially impact worldwide energy production.
This is a preview of subscription content, access via your institution.


Notes
We note that oil and natural gas are grouped for clarity in this analysis, because the data show that natural gas is not replacing oil, but augmenting energy supply.
References
M.M. Basko, A.J. Kemp, J. Meyer-ter-Vehn, Nucl. Fusion 40, 59 (2000)
P.F. Knapp et al., Phys. Plasmas 22, 056306 (2015)
G.A. Wurden, S.C. Hsu, T.P. Intrator et al., J. Fusion Energ. (2015). doi:10.1007/s10894-015-0038-x
S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)
S.A. Slutz, R.A. Vesey, Phys. Rev. Lett. 108, 025003 (2012)
A.B. Sefkow et al., Phys. Plasmas 21, 072711 (2014)
D.C. Rovang et al., Rev. Sci. Instrum. 85, 124701 (2014)
P.K. Rambo et al., Appl. Opt. 44, 2421 (2005)
R.D. McBride, S.A. Slutz, Phys. Plasmas 22, 052708 (2015)
M.R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)
P.F. Schmit et al., Phys. Rev. Lett. 113, 155004 (2014)
M.R. Gomez et al., Phys. Plasmas 22, 056306 (2015)
S.B. Hansen et al., Phys. Plasmas 22, 056313 (2015)
D.B. Sinars et al., Phys. Rev. Lett. 105, 185001 (2010)
D.B. Sinars et al., Phys. Plasmas 18, 056301 (2011)
R.D. McBride et al., Phys. Rev. Lett. 109, 135004 (2012)
R.D. McBride et al., Phys. Plasmas 20, 056309 (2013)
T.J. Awe et al., Phys. Rev. Lett. 111, 235005 (2013)
T.J. Awe et al., Phys. Plasmas 21, 056303 (2014)
K.J. Peterson et al., Phys. Plasmas 19, 092701 (2012)
K.J. Peterson et al., Phys. Plasmas 20, 056305 (2013)
K.J. Peterson et al., Phys. Rev. Lett. 112, 135002 (2014)
D.D. Ryutov, M.E. Cuneo, M.C. Herrmann, D.B. Sinars, S.A. Slutz, Phys. Plasmas 19, 062706 (2012)
A.L. Velikovich, J.L. Giuliani, S.T. Zalesak, Phys. Plasmas 22, 042702 (2015)
P.Y. Chang et al., Phys. Rev. Lett. 107, 035006 (2011)
M.E. Cuneo, M.C. Herrmann, D.B. Sinars et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)
C.A. Coverdale et al., Phys. Plasmas 14, 022706 (2007)
S.A. Slutz, C.L. Olson, P. Peterson, Phys. Plasmas 10, 429 (2003)
C.L. Olson, G. Rochau, S. Slutz et al., Fusion Sci. Technol. 47, 633 (2005)
V. Smil, Creating the Twentieth Century (Oxford University Press, Oxford, 2005)
V. Smil, Transforming the Twentieth Century (Oxford University Press, Oxford, 2006)
V. Smil, Energy at the Crossroads (The MIT Press, Cambridge, 2003)
V. Smil, Energy Transitions: History, Requirements, Prospects, (Praeger Press, Santa Barbara, 2010)
U.S. Energy Information Agency. http://www.eia.gov/
J.C. Fischer, R.H. Pry, Technol. Forecast. Soc. Change 3, 75 (1971)
C. Marchetti, Technol. Forecast. Soc. Change 10, 345 (1977)
D.J.C. MacKay, Sustainable Energy-Without the Hot Air (UIT Cambridge Ltd., Cambridge, 2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sinars, D.B., Campbell, E.M., Cuneo, M.E. et al. The Role of Magnetized Liner Inertial Fusion as a Pathway to Fusion Energy. J Fusion Energ 35, 78–84 (2016). https://doi.org/10.1007/s10894-015-0023-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10894-015-0023-4