Journal of Fusion Energy

, Volume 34, Issue 3, pp 528–531 | Cite as

Optimal Parameters of Fusion Neutron Sources with a Powerful Injection Heating

Original Research

Abstract

Fusion neutron sources do not require a high power gain, when used as part of a hybrid fusion–fission reactor. The efficiency of the neutron source can be substantially increased by increasing the reaction rate due to the injection of fast atoms. We study such regimes to evaluate optimal parameters of injection. Possible parameters are estimated for neutron sources based on closed magnetic traps, such as tokamak, stellarator and field reversed magnetic configuration.

Keywords

Fast particles Injection Fusion neutron source 

Notes

Acknowledgments

Work was performed in the framework of the project 13.2573.2014/K of Russian Ministry of Education and Science.

References

  1. 1.
    W.M. Stacey, Nucl. Fusion 47, 217 (2007)CrossRefADSGoogle Scholar
  2. 2.
    M. Kotschenreuther, S. Mahajan, P. Valanju et al., Fusion Eng. Design 84, 83 (2009)CrossRefGoogle Scholar
  3. 4.
    B.V. Kuteev, P.R. Goncharov, V.Yu. Sergeev, V.I. Khripunov, Plasma Phys. Reports 36, 281 (2010)CrossRefADSGoogle Scholar
  4. 3.
    S.V. Mirnov, Plasma Phys. Control. Fusion 55, 045003 (2013)CrossRefADSGoogle Scholar
  5. 5.
    R.W. Moir, W. Manheimer, Lecture Notes in Energy 19, chapter 14. (Springer, 2013), pp. 699–472 http://link.springer.com/chapter/10.1007/978-1-4471-5556-0_14
  6. 6.
    L.M. Lidsky, Nucl. Fusion 15, 151 (1975)CrossRefADSGoogle Scholar
  7. 7.
    Proceedings of the US-USSR symposium on fusion–fission reactors, CONF-760733, Lawrence Livermore Laboratory (1976)Google Scholar
  8. 8.
    Proceedings of the 2nd US-USSR symposium on fusion–fission reactors, ed. by V.I. Pistunovich (Atomizdat, Moscow, 1978), in RussianGoogle Scholar
  9. 9.
    T.J. Dolan, Fusion Research, Chapter 29 (Pergamon Press, Oxford, 1982)Google Scholar
  10. 10.
    Report of the Research Needs Workshop (2009) Gaithersburg, http://fire.pppl.gov/Hybrid_Report_Final.pdf
  11. 11.
    M. Dawson, H.P. Furth, F.H. Tenney, Phys. Rev. Lett. 26, 1156 (1971)CrossRefADSGoogle Scholar
  12. 12.
    J.D. Strachan, S. Batha, M. Beer et al., Plasma Phys. Control. Fusion 39, B103 (1997)CrossRefGoogle Scholar
  13. 13.
    R.J. Hawryluk, S. Batha, W. Blanchard et al., Phys. Plasmas 5, 1577 (1998)CrossRefADSGoogle Scholar
  14. 14.
    A.Yu. Chirkov, Tech. Phys. Lett. 26, 946 (2000)Google Scholar
  15. 15.
    E. Ruskov, W.W. Heidbrink, D. McCune, L. Johnson, Plasma Phys. Control. Fusion 38, 389 (1996)CrossRefADSGoogle Scholar
  16. 16.
    B.V. Kuteev, E.A. Azizov, A.S. Bykov et al., Nucl. Fusion 51, 073013 (2011)CrossRefADSGoogle Scholar
  17. 17.
    J. Slough, J. Fusion Energ. 27, 115 (2008)CrossRefGoogle Scholar
  18. 18.
    P.A. Bagryansky, A.A. Ivanov, E.P. Kruglyakov et al., Fusion Eng. Des. 70, 13 (2004)CrossRefGoogle Scholar
  19. 19.
    A.Yu. Chirkov, S.V. Ryzhkov, P.A. Bagryansky, A.V. Anikeev, Fusion Sci. Technol. 59(1T), 39 (2011)Google Scholar
  20. 20.
    A.Yu. Chirkov, J. Fusion Energ. 32, 208 (2013)CrossRefADSGoogle Scholar
  21. 21.
    A.Yu. Chirkov, V.I. Khvesyuk, Fusion Technol. 39(1T), 406 (2001)Google Scholar
  22. 22.
    A.Yu. Chirkov, Nucl. Phys. Eng. 4, 1050 (2013)Google Scholar
  23. 23.
    A.Yu. Chirkov, J. Fusion Energ. 33, 139 (2014)CrossRefGoogle Scholar
  24. 24.
    A.Yu. Chirkov, V.I. Khvesyuk, Plasma Phys. Rep. 37, 437 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Bauman Moscow State Technical UniversityMoscowRussian Federation

Personalised recommendations