Skip to main content
Log in

Thermal Analysis of Breeder Unit for Helium Cooled Solid Breeder Blanket of Chinese Fusion Engineering Test Reactor

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor, a kind of helium cooled solid tritium breeder blanket was proposed. The blanket uses the pebbles of lithium ceramics (Li4SiO4) and beryllium as tritium breeder and neutron multiplier, respectively. The thermal conditions of breeder unit directly affect the performance of tritium breeding and the safety of blanket. Therefore, thermal analysis of the pebble beds is of vital importance for a reliable blanket design. State steady thermal hydraulic analysis of the breeder unit has been performed, showing that the temperature satisfied the corresponding material temperature limits. State steady thermo-mechanical analysis has also been carried out. The maximum von Mises stress was within the allowable stress. Parametric sensitivity studies have been conducted to investigate the influence of main parameters (e.g. coolant mass flow rate, inlet temperature and pebble bed thermal conductivity) on the temperature distribution of the pebble beds and cooling plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y.X. Wan, CFETR the next step for FE in China beyond ITER, visions of the future, 32nd annual meeting and symposium, Washington, DC, Dec 10–11, 2013. http://fire.pppl.gov/FPA!3_Wan_CFETR.pdf. Accessed 10 July 2014

  2. B.N. Wan, S.Y. Ding, J.P. Qian, G.Q. Li, B.J. Xiao, G.S. Xu, IEEE Trans. Plasma Sci. 42, 495–502 (2014)

    Article  Google Scholar 

  3. L. Cao, D. Yao, Z. Zhou, J. Fusion Energ. 33, 523–528 (2014)

  4. H. Chen, M. Li, Z. Lv, G. Zhou, Q. Liu, S. Wang, H. Zhao, X. Wang, J. Zheng, P. Zhao, Y. Li, Conceptual design and analysis of the helium cooled solid breeder blanket for CFETR superconducting tokamak option, SOFT-28, San Sebastián, Spain, Sept. 29–Oct. 3, 2014

  5. Z. Xu, S. Hermsmeyer, Fusion Eng. Des. 75–79, 785–788 (2005)

    Article  Google Scholar 

  6. F. Hernández, F. Cismondi, B. Kiss, Fusion Eng. Des. 86, 2278–2281 (2011)

    Article  Google Scholar 

  7. Z. Xu, R. Meyder, L.V. Boccaccini, Fusion Eng. Des. 81, 2233–2238 (2006)

    Article  Google Scholar 

  8. F. Cismondi, B. Kiss, F. Hernández, E. NDiaye, G. Legradi, J. Reimann, M. Ilic, Fusion Eng. Des. 87, 1123–1129 (2012)

    Article  Google Scholar 

  9. F. Hernández, F. Cismondi, B. Kiss, Fusion Eng. Des. 87, 1111–1117 (2012)

    Article  Google Scholar 

  10. M. Lei, Y. Song, M. Ye, Int. J. Energy Res. (2014). doi:10.1002/er.3249

  11. S. Qi, G. Wang, C. Chen, H. Tang, J. Fusion Energ. (2014). doi:10.1007/s10894-014-9768-4

  12. H. Petersen, The properties of helium: density, specific heats, viscosity, and thermal conductivity at pressures from 1 to 100 bar and from room temperature to about 1800 K, Danish Atomic Energy Commission, RISO-224, 1970. http://www.risoe.dk/rispubl/reports_INIS/RISO224.pdf. Accessed 10 July 2014

  13. A.A.F. Tavassoli, J.W. Rensman, M. Schirra, K. Shiba, Fusion Eng. Des. 61–62, 617–628 (2002)

    Article  Google Scholar 

  14. Z. Xu, J. Rey, U. Fischer, A. v.d. Weth, C. Polixa, Development of a DEMO helium cooled pebble bed (HCPB) breeder unit featured in flat plates with meandering channels, Forschungszentrum Karlsruhe, FZKA-7181, 2006. http://bibliothek.fzk.de/zb/berichte/FZKA7181.pdf. Accessed 10 July 2014

  15. ANSYS Inc., ANSYS Documentation, 2012

  16. M. Moscardini, Helium Cooled Pebble Bed Test Blanket Module for a nuclear fusion reactor: thermo mechanical analyses of the Breeder Unit, Master thesis, Università di Pisa, May 2013. http://etd.adm.unipi.it/t/etd-04102013-225834/. Accessed 10 July 2014

  17. ITER Organisation. Structural Design Criteria for ITER In-vessel Components, ITER document: G 74 MA 8 01-05-28W 0.2, September 2012

  18. J. Reimann, G. Piazza, Z. Xu, A. Goraieb, H. Harsch, Measurements of the thermal conductivity of compressed beryllium pebble beds, Forschungszentrum Karlsruhe, FZKA-7096, 2005. http://bibliothek.fzk.de/zb/berichte/FZKA7096.pdf. Accessed 10 July 2014

  19. M.D. Donne, G. Sordon, Fusion Technol. 17, 597–635 (1990)

    Google Scholar 

Download references

Acknowledgments

This work is supported by a scholarship from China Scholarship Council (File No. 201406340091) and by the National Special R&D Programme for Magnetic Confinement Fusion Energy of China funded by Ministry of Science and Technology of the People’s Republic of China (Grant Nos. 2014GB111005 and 2014GB110001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Li, M., Liu, Q. et al. Thermal Analysis of Breeder Unit for Helium Cooled Solid Breeder Blanket of Chinese Fusion Engineering Test Reactor. J Fusion Energ 34, 339–345 (2015). https://doi.org/10.1007/s10894-014-9798-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-014-9798-y

Keywords

Navigation