Skip to main content
Log in

The Effect of “Locally Modifying Safety Factor Barrier” on Confinement Time in Tokamak with Magnetic Divertor

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The effect of magnetic barrier which is produced by the local modification of safety profile on confinement time of chaotic magnetic fields in tokamak is studied. Magnetic divertor coils are used to enhance plasma confinement and to remove some plasma instabilities in tokamak. Producing chaotic fields near the plasma edge, on the other hand decreases plasma confinement time by increasing radial transport. So magnetic barriers are used in plasma edge to increase confinement time by limiting or reducing radial diffusion of chaotic field lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Feneberg, G.H. Wolf, Nucl. Fusion 21, 669 (1981)

    Article  Google Scholar 

  2. S.S. Abdullaev, K.H. Finken, K.H. Spatschek, Phys. Plasmas 6, 153 (1999)

    Article  ADS  Google Scholar 

  3. J. Wesson, Tokamaks (Oxford University Press), Oxford, 1987)

    Google Scholar 

  4. F. Karger, F. Lackner, Phys. Lett. A 61, 385 (1975)

    Article  ADS  Google Scholar 

  5. W. Engelhardt, W. Feneberg, J. Nucl. Mater. 76(77), 518 (1978)

    Article  ADS  Google Scholar 

  6. J.C. Vallet et al., Phys. Rev. Lett. 67, 2662 (1991)

    Article  ADS  Google Scholar 

  7. T.E. Evans et al., J. Nucl. Mat. 196–198, 421 (1992)

    Article  Google Scholar 

  8. T.C. Hender et al., Nucl. Fusion 32, 2019 (1992)

    Article  Google Scholar 

  9. K.H. Finken et al., Phys. Rev. Lett. 98, 065001 (2007)

    Article  ADS  Google Scholar 

  10. T.E. Evans et al., Nucl. Fusion 45, 595 (2005)

    Article  ADS  Google Scholar 

  11. T.E. Evans et al., Phys. Rev. Lett. 92, 235003 (2004)

    Article  ADS  Google Scholar 

  12. J.R. Cary, J.D. Hanson, Phys. Fluids 29, 2464 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. J.D. Hanson, Nucl. Fusion 34, 441 (1994)

    Article  ADS  Google Scholar 

  14. S.R. Hudson, R.L. Dewar, Phys. Lett. A 226, 85 (1997)

    Article  ADS  Google Scholar 

  15. S.R. Hudson, R.L. Dewar, Phys. Lett. A 247, 246 (1998)

    Article  ADS  Google Scholar 

  16. R. Parker et al., J. Nucl. Mater. 241243, 1 (1997)

  17. S.C. McCool et al., Nucl. Fusion 29, 547 (1989)

    Article  Google Scholar 

  18. S.C. McCool et al., Nucl. Fusion 30, 167 (1990)

    Article  Google Scholar 

  19. A. Grosman et al., J. Nucl. Mat. 176–177, 493 (1990)

    Article  Google Scholar 

  20. A. Grosman et al., Plasma Phys. Control. Fusion 32, 1011 (1990)

    Article  ADS  Google Scholar 

  21. M. Lehnen et al., Plasma Phys. Control. Fusion 47, B237 (2005)

    Article  Google Scholar 

  22. T.E. Evans et al., Nat. Phys. 2, 419 (2006)

    Article  Google Scholar 

  23. V. Budaev et al., Nucl. Fusion 44, S108 (2004)

    Article  ADS  Google Scholar 

  24. R.C. Wolf, Plasma Phys. Control. Fusion 45, R1–R91 (2003)

    Article  ADS  Google Scholar 

  25. K.H. Finken et al., Nucl. Fusion 48, 020201 (2008)

    Article  ADS  Google Scholar 

  26. F.M. Levinton et al., Phys. Rev. Lett. 75, 4417 (1995)

    Article  ADS  Google Scholar 

  27. F.A. Marcus et al., Phys. Plasma 15, 112304 (2008)

    Article  ADS  Google Scholar 

  28. K.H. Spatschek, Plasma Phys. Control. Fusion 50, 124027 (2008)

    Article  ADS  Google Scholar 

  29. F.A. Volpe et al., Nucl. Fusion 52, 054017 (2012)

    Article  ADS  Google Scholar 

  30. S.M. Jazayeri, A.R. Sohrabi, J. Fusion Energ. 32, 71 (2013)

    Article  ADS  Google Scholar 

  31. A.F. Marcus et al., Nucl. Fusion 48, 024018 (2008)

    Article  ADS  Google Scholar 

  32. T. Kroetz et al., Phys. Plasmas 15, 092310 (2008)

    Article  ADS  Google Scholar 

  33. D. Constantinescu, M.-C. Firpo, Nucl. Fusion 52(5), 054006 (2012)

    Article  ADS  Google Scholar 

  34. S.S. Abdullaev, J. Phys. A Math. Gen. 32, 2745 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. S.S. Abdullaev, Construction of Mappings for Hamiltonian Systems and Their Applications (Springer, Berlin, 2006)

  36. R. Balescu et al., Phys. Rev. E 58, 951 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  37. S.S. Abdullaev, Nucl. Fusion 44, S12 (2004)

    Article  ADS  Google Scholar 

  38. T.E. Evans et al., J. Phys. Conf. Ser. 7, 174 (2005)

    Article  ADS  Google Scholar 

  39. J. Aguirre et al., Rev. Mod. Phys. 81, 333 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmadreza Sohrabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi, A., Jazayeri, S.M. The Effect of “Locally Modifying Safety Factor Barrier” on Confinement Time in Tokamak with Magnetic Divertor. J Fusion Energ 34, 158–162 (2015). https://doi.org/10.1007/s10894-014-9777-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-014-9777-3

Keywords

Navigation