Skip to main content
Log in

Numerical Simulation of Toroidal Momentum Transport with Neutral Beam Injection on Tokamak

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

In modern tokamaks, the toroidal plasma rotation has been demonstrated to play a beneficial role in the fusion plasmas. In this paper, the simulation of the toroidal momentum sources, momentum diffusivity χ ϕ and plasma rotation with neutral beam injection (NBI) on EAST tokamak have been carried out by using MMM95 and GLF23 anomalous transport models in ONETWO and NUBEAM codes. The physical characteristics of the toroidal momentum transport for the different plasma density and temperature are analyzed. According to the simulation results, the main momentum sources for NBI are from the collision and \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {J} \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B}\) (\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {J}\) is the plasma current and \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B}\) is the magnetic field). The former is most in the center and the latter is primary in the middle of the plasma. Also, for EAST, χ ϕ is about twice of the thermal diffusivity χ i according to the MMM95 model in the like H-mode. Moreover, because of the enhancement of collision and deposition, the density tends to improve the total beam torque. Nevertheless, to keep the neutrality of the plasma, the density reduces the plasma rotation by increasing the ion density and the momentum diffusivity according to the MMM95 and GLF23 anomalous transport models. In addition, in the L-mode plasma, although the increasing temperature displays little influence on the beam torque, it improves the momentum diffusivity because of the ion temperature gradient (ITG) mode in the anomalous transport and reduces the plasma rotation. The results will be valuable for the experimental research of the momentum transport on EAST or ITER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. Igochine, Nucl. Fusion 52, 074010 (2012)

    Article  ADS  Google Scholar 

  2. T.C. Hender, J.C. Wesley, J. Bialek et al., Nucl. Fusion 47, S128 (2007)

    Article  ADS  Google Scholar 

  3. V.D. Pustovitov, Plasma Phys. Rep. 29, 105 (2003)

    Article  ADS  Google Scholar 

  4. A.H. Bekheit, J. Fusion Energ. 32, 509 (2013)

    Article  ADS  Google Scholar 

  5. L.G. Eriksson, F. Porcelli, Nucl. Fusion 42, 959 (2002)

    Article  ADS  Google Scholar 

  6. Y.J. Shi, G.S. Xu, F.D. Wang et al., Phys. Rev. Lett. 106, 235001 (2011)

    Article  ADS  Google Scholar 

  7. J.S. Degrassie, R.J. Groebner, K.H. Burrell, Phys. Plasmas 13, 112507 (2006)

    Article  ADS  Google Scholar 

  8. P.C. De Vries, M.D. Hua, D.C. Mcdonald et al., Nucl. Fusion 48, 065006 (2008)

    Article  ADS  Google Scholar 

  9. G. Tardini, J. Ferreira, P. Mantica et al., Nucl. Fusion 49, 085010 (2009)

    Article  ADS  Google Scholar 

  10. J. Wu, L.M. Yao, J.H. Zhu et al., Plasma Sci. Technol. 14, 953 (2012)

    Article  Google Scholar 

  11. T. Rafiq, A.H. Kritz, J. Weiland et al., Phys. Plasmas 20, 032506 (2013)

    Article  ADS  Google Scholar 

  12. H. Lee, K. Ida, M. Osakabe et al., Plasma Phys. Control. Fusion 55, 014011 (2013)

    Article  ADS  Google Scholar 

  13. M. Yoshida, S. Kaye, J. Rice et al., Nucl. Fusion 52, 123005 (2012)

    Article  ADS  Google Scholar 

  14. D. Zhou, H.S. John, Y.M. Hu et al., Plasma Sci. Technol 11, 417 (2009)

    Article  ADS  Google Scholar 

  15. J. Wang, C.D. Hu, B. Wu, Phys. Scr. 85, 035502 (2012)

    Article  ADS  Google Scholar 

  16. G. Bateman, A.H. Kritz, J.E. Kinsey et al., Phys. Plasmas 5, 1793 (1998)

    Article  ADS  Google Scholar 

  17. R.E. Waltz, G.M. Staebler, W. Dorland et al., Phys. Plasmas 4, 2482 (1997)

    Article  ADS  Google Scholar 

  18. B.N. Wan, S.Y. Ding, J.P. Qian, et al., 2013 IEEE 25th Symposium on Fusion Engineering (SOFE), (2013), pp 6

  19. A. Pankin, D. Mccune, R. Andre et al., Comput. Phys. Commun. 159, 157 (2004)

    Article  ADS  Google Scholar 

  20. A. Pankin, G. Bateman, R. Budny et al., Comput. Phys. Commun. 164, 421 (2004)

    Article  ADS  Google Scholar 

  21. https://Fusion.Gat.Com/Theory/Onetwo/

  22. R.J. Goldston, Basic physical processes of toroidal fusion plasmas (Proc. Course and Workshop Varenna, 1985),Vol. 1, CEC, 1986, Brussels

  23. X.G. Wang, B. Wu, Y.M. Hu et al., Phys. Scr. 86, 065501 (2012)

    Article  ADS  Google Scholar 

  24. J.F. Wang, B. Wu, C.D. Hu, Plasma Sci. Technol 12, 289 (2010)

    Article  ADS  Google Scholar 

  25. J.F. Wang, B. Wu, J. Wang et al., J. Fusion Energ. 33, 20 (2014)

    Article  Google Scholar 

  26. F.L. Hinton, M.N. Rosenbluth, Phys. Lett. A 259, 267 (1999)

    Article  ADS  Google Scholar 

  27. S. Suckewer, H.P. Eubank, R.J. Goldston et al., Nucl. Fusion 21, 1301 (1981)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the General Atomics Co. and the National Transport Code Collaboration for use of their codes NUBEAM and ONETWO. This work was supported by the Center of Computational Science, Hefei Institute of Physical Sciences and the National Natural Science Foundation of China (11247302, 11175211) and partly supported by National Magnetic Confinement Fusion Science Program of China (2013GB101001, 2012GB103002, 2012GB112004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wu, B. & Hu, C. Numerical Simulation of Toroidal Momentum Transport with Neutral Beam Injection on Tokamak. J Fusion Energ 34, 133–139 (2015). https://doi.org/10.1007/s10894-014-9764-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-014-9764-8

Keywords

Navigation