Skip to main content

Kilotesla Magnetic Assisted Fast Laser Ignited Boron-11 Hydrogen Fusion with Nonlinear Force Driven Ultrahigh Accelerated Plasma Blocks

An Erratum to this article was published on 26 October 2014


Nuclear fusion with confinement by available kilotesla magnetic fields allows improved performance for Inertial Confinement Fusion. The combination of this approach with the established ultrahigh laser acceleration of plasma blocks driven by nonlinear (ponderomotive) forces of ps laser pulses of exawatt power may permit high gain boron-11 fusion with protons. This potentially provides a path to very attractive fusion power stations based on aneutronic fusion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    R. Sauerbrey, Phys. Plasmas 3, 4712 (1996)

    ADS  Article  Google Scholar 

  2. 2.

    H. Hora, R. Castillo, R.G. Clark, E.L. Kane, V.F. Lawrence, R.D.C. Miller, M.F. Nicholson-Florence, M.M. Novak, P.S. Ray, J.R. Shepanski, A.I. Tsivinky, Proceed. 7th IAEA Conf. Plasma Phys. and Thermonucl. Fusion, Innsbruck, 23–30 August, 1978, vol. III (IAEA,Vienna, 1979), pp. 237–245

  3. 3.

    H. Hora, Physics of Laser Driven Plasmas (Wiley, New York, 1981), pp. 178–179

    Google Scholar 

  4. 4.

    H. Hora, Nonlinear confining and deconfining forces associated with the interaction of laser radiation with plasma. Phys. Fluids 12, 182–191 (1969)

    ADS  Article  Google Scholar 

  5. 5.

    H. Hora, J. Badziak, M.N. Read, Y.T. Li, T.J. Liang, H. Liu, Z.M. Shang, J. Zhang, F. Osman, G.H. Miley, W.Y. Zhang, X.T. He, H.S. Peng, S. Glowacz,S. Jablonski, J. Wolowski, Z. Skladanowski, K. Jungwirth, K. Rohlena, J. Ullschmied, Phys. Plasmas 14, 072701/1–7 (2007)

  6. 6.

    M. Tabak, J. Hammer, M.N. Glinski, W.L. Kruer, S.C. Wilks, J. Woodorth, E.M. Campbell, M.D. Perry, R.J. Mason, Ignition of high-gain with ultrapowerfull lasers. Phys. Plasmas 1, 1626 (1994)

    ADS  Article  Google Scholar 

  7. 7.

    G. Mourou, B. Brocklesby, T. Tajima, J. Limpert, The future is fiber accelerators. Nat. Photonics 7, 258 (2013)

    ADS  Article  Google Scholar 

  8. 8.

    H. Hora, Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882–886 (1975)

    ADS  Article  Google Scholar 

  9. 9.

    P. Zhang, J.T. He, D.B. Chen, Y. Zhang, X.W. Tang, J. Zhang et al., X-ray emission from ultraintense-ultrashort laser irradiation. Phys. Rev. E57, 3746–3752 (1998)

    ADS  Google Scholar 

  10. 10.

    I.B. Földes, J.S. Bakos, K. Gal, Y. Juhasz, M.A. Kedves, G. Koscis, S. Szatmari, G. Verex, Properties of high harmonics generated by ultrashort UV laser pulses on solid surfaces. Laser Phys. 10, 264–269 (2000)

    Google Scholar 

  11. 11.

    H. Hora, P. Lalousis, S. Moustaizis, Laser Part. Beams 32, 63–68 (2014)

    ADS  Article  Google Scholar 

  12. 12.

    M.S. Chu, Thermonuclear reaction waves at high densities. Phys. Fluids 15, 412–422 (1972)

    ADS  Article  Google Scholar 

  13. 13.

    H. Hora, B. Malekynia, M. Ghoranneviss, G.H. Miley, X.T. He, “Twenty times lower ignition thresholds for laser driven fusion using collective effects and the inhibition factor,” App. Phys. Lett. 93, 011101/1-/3 (2008)

  14. 14.

    H. Hora, Laser fusion with nonlinear force driven plasma blocks: thresholds and dielectric effects. Laser Part. Beams 27, 207–222 (2009)

    ADS  Article  Google Scholar 

  15. 15.

    H. Hora, G.H. Miley, M. Ghoranneviss, B. Malekynia, N. Azizi, Laser-optical Path to nuclear energy without radioactivity: fusion of hydrogen-boron by nonlinear force driven plasma blocks. Opt. Commun. 282, 4124–4126 (2009)

    ADS  Article  Google Scholar 

  16. 16.

    H. Hora, G.H. Miley, M. Ghoranneviss, B. Malekynia, N. Azizi, X.-T. He, Fusion energy without radioactivity: laser ignition of solid hydrogen–boron(11) fuel. Energy Environ. Sci. 3, 479–486 (2010)

    Article  Google Scholar 

  17. 17.

    T. Weaver, G. Zimmerman, L. Wood, Exotic CTR Fuel: Non-Thermal Effects and Laser Fusion Application, Report UCRL-74938 (Lawrence Livermore Laboratory, Livermore, CA, 1973)

  18. 18.

    R. Stening, R. Khoda-Bakhsh, P. Pieruschka, G. Kasotakis, E. Kuhn, G.H. Miley, H. Hora, in Volume Ignition for Inertial Confinement, Laser Interaction and Related Plasma Phenomena, vol. 10, ed. by G.H. Miley, H. Hora (Plenum Press, New York, 1993), pp. 347–389

  19. 19.

    M. Kouhi et al., Laser Part. Beams 29, 125 (2011)

    ADS  Article  Google Scholar 

  20. 20.

    S. Haan, (LLNL NIF Project) in Highlights in Chemical Technology, ed. by Y. Li Royal Society of Chemistry, London, 7, 24th March

  21. 21.

    J.L. Nuckolls, Private communication (IFSA, San Francisco, 2009)

    Google Scholar 

  22. 22.

    S. Fujioka et al., Kilotesla magnetic field due to a capacitor coil target driven high power laser. Sci. Rep. 3, 1170 (2013). doi:10.1038/srep01170

    ADS  Google Scholar 

  23. 23.

    S. Moustaizis, P. Lalousis, H. Hora, in High Power, High Energy and Hig-intensity Laser Technology and Research using Extreme Light: Entering New Frontiers with Petawatt-class Lasers, ed. by J. Hein, G. Korn, L.O. Silva, Proceedings of SPIE, vol. 8780, paper 878029/1–10

  24. 24.

    P. Lalousis, H. Hora, First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction. Laser Part. Beams 1, 283–304 (1983)

    ADS  Article  Google Scholar 

  25. 25.

    H. Hora, P. Lalousis, S. Eliezer, Analysis of the inverted double layers in nonlinear force produced cavitons at laser–plasma interaction. Phys. Rev. Letters 53, 1650–1652 (1984)

    ADS  Article  Google Scholar 

  26. 26.

    H. Hora, Plasmas at High Temperature and Density (Springer, Heidelberg, 1991)

    Google Scholar 

  27. 27.

    R. Kulsrud, Phys. Today 34(4), 56 (1983). 3rd Col. 7th line

    Google Scholar 

  28. 28.

    H. Alfven, Cosmic Plasmas (Van Reidel, Dordrecht, 1981)

    Book  Google Scholar 

  29. 29.

    P. Lalousis, I. Földes, H. Hora, Laser Part. Beams 30, 233 (2012)

    Article  Google Scholar 

  30. 30.

    P. Lalousis, H. Hora, S. Eliezer, J.-M. Martinez-Val, S. Moustaizis, G.H. Miley, G. Mourou, Shock mechanisms by ultrahigh laser accelerated plasma blocks in solid density targets for fusion. Phys. Lett. A 377, 885–888 (2013)

    ADS  Article  Google Scholar 

  31. 31.

    H. Hora, in Collective Electron Interaction at Ultrafast Acceleration of Plasma Blocks, in High Power, High Energy and High-intensity Laser Technology and Research using Extreme Light: Entering New Frontiers with Petawatt-class Lasers, ed. by J. Hein, G. Korn, L.O. Silva, vol. 8780, Proceedings of SPIE, paper 878024/1–17

  32. 32.

    H. Hora, G.H. Miley, P. Lalousis, S. Moustaizis, K. Clayton, D. Jonas, Efficient generation of fusion flames using PW-ps laser pulses for ultrahigh acceleration of plasma blocks by nonlinear (ponderomotive) forces. IEEE Trans. Plasma Sci. 42, 640–644 (2014)

    Article  Google Scholar 

  33. 33.

    S. Gulkis, in Encyclopaedia of Physical Science and Technology, vol. 11, ed. by R.A. Meyers (Academic Press, San Diego, 1987), p. 644. Eq. (33)

    Google Scholar 

  34. 34.

    N.A. Tahir, D.H.H. Hoffmann, Laser Part. Beams 15, 575 (1997)

    ADS  Article  Google Scholar 

  35. 35.

    J.H. Nuckolls, in Edward Teller Lectures, ed. by H. Hora, G.H. Miley (Imperial College Press, London, 2005) p. 13

  36. 36.

    P. Lalousis, H. Hora, S. Moustaizis, Optimized boron fusion with magnetic trapping by laser driven plasma block initiation at nonlinear force driven ultrahigh acceleration. Laser Part. Beams 32, 409–411 (2014)

    ADS  Article  Google Scholar 

  37. 37.

    H. Hora, in Laser Plasma Physics. arXiv:1408.4822

Download references

Author information



Corresponding author

Correspondence to H. Hora.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lalousis, P., Moustaizis, S., Hora, H. et al. Kilotesla Magnetic Assisted Fast Laser Ignited Boron-11 Hydrogen Fusion with Nonlinear Force Driven Ultrahigh Accelerated Plasma Blocks. J Fusion Energ 34, 62–67 (2015).

Download citation


  • Laser fusion
  • Picosecond exawatt pulses
  • Kilotesla magnetic fields
  • Boron-proton fusion
  • Uncompressed fuel