Skip to main content

StarDriver: A Flexible Laser Driver for Inertial Confinement Fusion and High Energy Density Physics


We propose a novel method to minimize laser–plasma instabilities and improve laser–plasma coupling by the use of multi-beam laser architecture with a large system frequency bandwidth and many beamlets per unit solid angle. The StarDriver™, laser driver is constructed from 104 to 105 individual lasers, each delivering nominally 100 J in pulses of ~3–30 ns at a nominal wavelength of ~355 nm with better than 3–5 diffraction-limited performance. The beamlets are individually relatively narrowband to facilitate maximum laser performance, but the ensemble of beamlets span a wide frequency range. Currently available laser media enable Δω/ω ~ 2 % at 355 nm with the possibility of system bandwidths approaching 10 % in the future. The many beamlets of StarDriver™ provide optimal asymptotic smoothing for hydrodynamic instabilities (0–1 %), innovative focusing strategies including zooming, and the large bandwidth enables extremely rapid hydrodynamic smoothing times ~30 fs. The distribution of frequencies among the beamlets allows flexibility for fine control of the seeding of the Rayleigh–Taylor instability. The ultra-broad bandwidth combined with the large total k-spectrum of the laser drive in the plasma corona may enable complete suppression of the most problematic laser–plasma instabilities such as stimulated Brillouin backscatter, stimulated Raman scatter, cross-beam energy transfer, and the two plasmon decay instability. StarDriver™ offers potentially superior flexibility in laser drivers for inertial confinement fusion, enabling almost arbitrary sequencing of wavelength, polarization, focus, and fine control of the spatio-temporal properties of the drive in the corona. The highly modular strategy of StarDriver™ should enable an attractive development pathway as well as maximizing overall system efficiency.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    E.M. Campbell, W.J. Hogan, The National Ignition Facility: applications for Inertial Fusion Energy and High Energy Density Science. 26th European Physical Society Conference on Controlled Fusion and Plasma Physics, Maastricht, Netherlands, 14–18 June 1999

  2. 2.

    E.M. Campbell, W.J. Hogan, D.H. Crandall, Inertial Fusion Science and Technology for the Next Century. 1st International Conference on Inertial Fusion Sciences and Applications, Bordeaux, France, 12–17 September 1999

  3. 3.

    E.M. Campbell, W.J. Hogan, D.H. Crandall, Inertial Fusion Energy Development: what is Needed and What will be Learned at the National Ignition Facility. 1st International Conference on Inertial Fusion Sciences and Applications, Bordeaux, France, 12–17 September 1999

  4. 4.

    C.A. Haynam et al., National ignition facility laser performance status. Appl. Opt. 46(16), 3276 (2007)

    ADS  Article  Google Scholar 

  5. 5.

    J.A. Paisner, E.M. Campbell, W.F. Hogan, The National Ignition Facility Project. ANS 11th Annual Conference on Fusion Energy, New Orleans, 16 June 1994

  6. 6.

    J. Lindl, Development of the indirect drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933 (1995)

    ADS  Article  Google Scholar 

  7. 7.

    LLE Review. Scientific reports of the Laboratory for Laser Energetics, University of Rochester, 250 E. River Rd, Rochester, vols. 1–126

  8. 8.

    R.L. McCrory, Laser-Driven Inertial Fusion Energy; Direct-Drive Targets Overview. NAS/NAE Committee on the Prospects for IFE Systems San Ramon, CA 29 January 2011

  9. 9.

    R.H. Lehmberg, S.P. Obenschain, The use of induced spatial coherence for uniform illumination of laser fusion targets. Opt. Commun. 46, 27 (1983)

    ADS  Article  Google Scholar 

  10. 10.

    S. Skupsky et al., Improved laser-beam uniformity using the angular dispersion of frequency modulated light. J. Appl. Phys. 66, 3456 (1989)

    ADS  Article  Google Scholar 

  11. 11.

    NIC scientists, Private Communications

  12. 12.

    J.E. Rothenberg, S.V. Weber, The Impact of Beam Smoothing Method on Direct Drive Target Performance for the NIF. 2nd Annual International Conference on Solid-State Lasers for Application to ICF, Paris, France, 22–25 October 1996

  13. 13.

    D. Eimerl, W. Kruer, E.M. Campbell, Ultrabroad bandwidth for ICF applications. Comments Plasma Phys. 15, 85 (1993)

    Google Scholar 

  14. 14.

    C.D. Orth, S.A. Payne, W.F. Krupke, A diode pumped solid state laser driver for inertial fusion energy. Nucl. Fusion 36, 75 (1996)

    ADS  Article  Google Scholar 

  15. 15.

    C. Labaune, D. Hulin, A. Galvanauskas, G.A. Mourou, On the feasibility of a fiber-based inertial fusion laser driver. Opt. Commun. 281, 4075–4080 (2008)

    ADS  Article  Google Scholar 

  16. 16.

    Z. Huang, H. Lin, D. Xu, M. Li, J. Wang, Y. Deng, R. Zhang, Y. Zhang, X. Tian, X. Wei, Parameter space for the collective laser coupling in the laser fusion driver based on the concept of fiber amplification network. Opt. Exp. 15, 16503 (2013)

    Google Scholar 

  17. 17.

    S. Jiang, M. Hanna, F. Druon, P. Georges, Impact of self-phase modulation on coherently combined fiber chirped-pulse amplifiers. Appl. Opt. 35, 1293 (2012)

    Google Scholar 

  18. 18.

    E.C. Cheung, M. Weber, R.R. Rice, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2008), paper WA2

  19. 19.

    E.M. Campbell, D. Eimerl, W.F. Krupke, StarDriver: a Flexible Laser Driver for Inertial Fusion Energy. US Patent Application #PCT/US2012/034289, 19 April 2012

  20. 20.

    D. Eimerl, E.M. Campbell, W.F. Krupke, J. Zweiback, W.L. Kruer, J. Zuegel, J. Myatt, J. Kelly, D. Froula, R.L. McCrory, StarDriver: a Flexible Laser Driver for Inertial Confinement Fusion and High Energy Density Physics. Paper NP8.00081, 55th Annual meeting of the APS division of plasma physics, Denver, Co, vol 58, 16 (November 2013)

  21. 21.

    Projections of the cost of the 2 MJ NIF laser based on the 80 kJ NOVA laser technology and design were in the range of 15–20 bn. Actual NIF laser cost was about 2–4 bn

  22. 22.

    D. Eimerl, J.R. Murray, J.F. Holzrichter, “Broadband Conversion of Fusion Lasers”, CLEOS/ICF’80 (San Diego, CA, 1980)

    Google Scholar 

  23. 23.

    D. Eimerl, R.S. Hargrove, J.A. Paisner, Efficient frequency conversion by stimulated Raman scattering. Phys. Rev. Lett. 46, 651 (1981)

    ADS  Article  Google Scholar 

  24. 24.

    D. Eimerl, D. Milam, J. Yu, Large bandwidth frequency-converted Nd:glass laser with Δν/ν = 2%. Phys. Rev. Lett. 70, 2738 (1993)

    ADS  Article  Google Scholar 

  25. 25.

    Y. Wu, S. Han, X. Song, Z. Xu, Y. Tang, B. Shuai, The control of laser–plasma parametric instabilities and the temperature of suprathermal electrons with ultrabroad bandwidth frequency modulated laser pulse. Plasma Phys. Control. Fusion 43, 469–482 (2001)

    ADS  Article  Google Scholar 

  26. 26.

    E. Takahashi, L.L. Losev, T. Tabuchi, Y. Matsumoto, S. Kato, I. Okuda, T. Aota, Y. Owadano, Generation of 30 pure rotational Raman sidebands using two-color pumping of D2 gas by KrF laser. Opt. Commun. 257, 133 (2006)

    ADS  Article  Google Scholar 

  27. 27.

    S. Skupsky, R.S. Craxton, Irradiation uniformity for high-compression laser-fusion experiments. Phys. Plasmas 6, 2157 (1999)

    ADS  Article  Google Scholar 

  28. 28.

    S.P. Obenschain, S.E. Bodner†, D. Colombant, K. Gerber, R.H. Lehmberg, E.A. McLean, A.N. Mostovych, M.S. Pronko, C.J. Pawley, A.J. Schmitt, J.D. Sethian, V. Serlin, J.A. Stamper, C.A. Sullivan, J.P. Dahlburg, J.H. Gardner, Y. Chan, A.V. Deniz, J. Hardgrove, T. Lehecka, M. Klapisch, The Nike KrF laser facility: performance and initial target experiments. Phys. Plasmas 3, 2098 (1996)

    ADS  Article  Google Scholar 

  29. 29.

    D.H. Froula, I.V. Igumenschev, D.T. Michel, D.H. Edgell, R. Follet, VYu. Glebov, V.N. Goncharov, J. Kwiatkowski, F.J. Marshall, P.B. Radha, W. Seka, C. Sorce, S. Stagnitto, C. Stoeckl, T.C. Sangster, Increasing hydrodynamic efficiency by reducing cross-beam energy transfer in direct-drive-implosion experiments. Phys. Rev. Lett. 108, 125003 (2012)

    ADS  Article  Google Scholar 

  30. 30.

    D.T. Michel, A.V. Maximov, R.W. Short, S.X. Hu, J.F. Myatt, W. Seka, A.A. Solodov, B. Yaakobi, D.H. Froula, Experimental validation of the two-plasmon decay common-wave process. Phys. Rev. Lett. 109, 155007 (2012)

    ADS  Article  Google Scholar 

  31. 31.

    D.H. Froula, B. Yaakobi, S.X. Hu, P.-Y. Chang, R.S. Craxton, D.H. Edgell, R. Follett, D.T. Michel, J.F. Myatt, W. Seka, R.W. Short, A. Solodov, C. Stoeckl, Saturation of the two-plasmon decay instability in long-scale-length plasmas relevant to direct-drive inertial confinement fusion. Phys. Rev. Lett. 108, 165003 (2012)

    ADS  Article  Google Scholar 

  32. 32.

    C. Stoeckl, R.E. Bahr, B. Yaakobi, W. Seka, S.P. Regan, R.S. Craxton, J.A. Delettrez, R.W. Short, J. Myatt, A.V. Maximov, H. Baldis, Multibeam effects on fast-electron generation from two-plasmon-decay instability. Phys. Rev. Lett. 90, 235002 (2003)

    ADS  Article  Google Scholar 

  33. 33.

    D.T. Michel, A.V. Maximov, R.W. Short, J.A. Delettrez, D. Edgell, S.X. Hu, I.V. Igumenshchev, J.F. Myatt, A.A. Solodov, C. Stoeckl, B. Yaakobi, D.H. Froula, Measured hot-electron intensity thresholds quantified by a two-plasmon-decay resonant common-wave gain in various experimental configurations. Phys. Plasmas 20, 055703 (2013)

    ADS  Article  Google Scholar 

  34. 34.

    J.W. Goodman, Statistical Optics (New York, Wiley, 1984)

    Google Scholar 

  35. 35.

    R.H. Lehmberg, Y. Chan, Near-field nonuniformities in angularly multiplexed KrF lasers with induced spatial incoherence. Naval Research Laboratory. Appl. Opt. 44, 2805 (2005)

    ADS  Article  Google Scholar 

  36. 36.

    A.V. Deniz et al., Comparison between measured and calculated nonuniformities of Nike laser beams smoothed by induced spatial incoherence. Opt. Commun. 147, 402 (1998)

    ADS  Article  Google Scholar 

  37. 37.

    R.H. Lehmberg, J.E. Rothenberg, Comparison of optical beam smoothing techniques for inertial confinement fusion and improvement of smoothing by the use of zero-correlation masks. J. Appl. Phys. 87, 1012 (2000)

    ADS  Article  Google Scholar 

  38. 38.

    D. Eimerl, Inhomogeneously Pumped Stimulated Raman Scattering. International Conference on Lasers, Orlando FL, (1978), Proceedings, STS press, 333 (1979)

  39. 39.

    W.L. Kruer, Physics of LaserPlasma Interactions. Frontiers in Physics (1989)

  40. 40.

    M.B. Hooper, Laser Plasma Interactions 5: inertial Confinement Fusion. 45th Scottish Universities Summer School in Physics, St Andrews (1995)

  41. 41.

    D. Eimerl, Nonforward stimulated Raman scattering from a phase-modulated pump beam. J. Opt. Soc. Am. B 24, 2465–2471 (2007)

    ADS  Article  MathSciNet  Google Scholar 

  42. 42.

    G. Laval, R. Pellat, D. Pesme, A. Ramani, M. Rosenbluth, E.A. Williams, Parametric instabilities in the presence of space-time random fluctuations. Phys. Fluids 20, 2049 (1977)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  43. 43.

    Y.C. Lee, P.K. Kaw, Temporal electrostatic instabilities in inhomogeneous plasmas. Phys. Rev. Lett. 32, 135 (1974)

    ADS  Article  Google Scholar 

  44. 44.

    C.S. Liu, M.N. Rosenbluth, Parametric decay of electromagnetic waves into two plasmons and its consequences. Phys. Fluids 19, 967 (1976)

    ADS  Article  Google Scholar 

  45. 45.

    C.S. Liu, N. Marshall, M.N. Rosenbluth, R.B. White, Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasma”. Phys. Fluids 17, 1211 (1974)

    ADS  Article  Google Scholar 

  46. 46.

    M.N. Rosenbluth, Parametric instabilities in inhomogeneous media. Phys. Rev. Lett. 29, 565 (1972)

    ADS  Article  Google Scholar 

  47. 47.

    M.N. Rosenbluth, R.B. White, C.S. Liu, Temporal evolution of a three-wave parametric instability. Phys. Rev. Lett. 31, 1190 (1973)

    ADS  Article  Google Scholar 

  48. 48.

    J.F. Drake, P.K. Kaw, Y.C. Lee, G. Schmidt, C.S. Liu, M.N. Rosenbluth, Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids 17, 778 (1974)

    ADS  Article  Google Scholar 

  49. 49.

    R. Yan, A.V. Maximov, C. Ren, The Linear regime of the two plasmon decay instability in inhomogeneous plasmas. Phys. Plasma 17, 052701 (2010)

    ADS  Article  Google Scholar 

  50. 50.

    D.H. Edgell, Modeling Cross-Beam Energy Transfer for Polar-Drive Experiments. 54th Annual Meeting of the American Physical Society, Division of Plasma Physics, Providence, RI, 29 October–2 November 2012

  51. 51.

    J.A. Marozas, Cross-Beam Energy Transfer (CBET) Effect Integrated into the 2-D Hydrodynamics Code DRACO. 54th Annual Meeting of the American Physical Society, Division of Plasma Physics, Providence, RI, 29 October–2 November 2012

  52. 52.

    A.V. Maximov, J.F. Myatt, R.W. Short, I.V. lgumenshchev, D.H. Edgell, W. Seka, Scattering of Multiple Crossing Laser Beams in Direct-Drive Inertial Confinement Fusion (ICF) Plasmas. 54th Annual Meeting of the American Physical Society, Division of Plasma Physics, Providence, RI, 29 October–2 November 2012

  53. 53.

    I.V. Igumenschev, W. Seka, D.H. Edgell, D.T. Michel, D.H. Froula, V.N. Goncharov, R.S. Craxton, L. Divol, R. Epstein, R. Follet, J.H. Kelley, T.Z. Kosc, A.V. Maximov, R.L. McCrory, D.D. Meyerhofer, P. Michel, J.F. Myatt, T.C. Sangster, A. Shvydky, S. Skupsky, C. Stoeckl, Crossed-beam energy transfer in direct-drive implosions. Phys. Plasmas 19, 056314 (2012)

    ADS  Article  Google Scholar 

  54. 54.

    L. J. Perkins, R. Betti, K. N. LaFortune, W. H. Williams, Shock ignition: a new approach to high gain inertial confinement fusion on the national ignition facility. Phys. Rev. Lett. 103(4), (2009)

  55. 55.

    J. Myatt, The Deleterious Effects of Multi-Beam Laser–Plasma Interactions on Inertial Confinement Fusion and their Mitigation. Paper FR1.00001, 55th Annual meeting of the APS division of plasma physics, Denver, Co, vol 58, 16 (November 2013)

Download references

Author information



Corresponding author

Correspondence to David Eimerl.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eimerl, D., Campbell, E.M., Krupke, W.F. et al. StarDriver: A Flexible Laser Driver for Inertial Confinement Fusion and High Energy Density Physics. J Fusion Energ 33, 476–488 (2014).

Download citation


  • Inertial confinement fusion
  • Inertial fusion energy
  • Nuclear fusion
  • Laser drivers
  • Ultrabroad bandwidth
  • High energy density physics
  • StarDriver
  • Instabilities