Skip to main content
Log in

Structural and Fracture Mechanics Analysis for the Bracket of ITER Upper ELM Coil

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The brackets are the important components of ITER edge localized modes (ELM) coils to connect the coils and rails. In order to assure the structural integrity and security of the bracket, the maximum tresca stress and stress intensity factor are examined from the viewpoints of structural and fracture mechanics. Based on the finite element method, the global upper ELM coils with simplified and detailed bracket are investigated. Since it is difficult to perform in-service inspection due to inaccessibility of in-vessel coils, it is important to estimate the allowable initial defect. Assuming an initial crack in the maximum first principal stress region on the bracket, the fracture mechanics analyses under different loads are performed. Results show that the bracket design is valid and feasible and the calculation method of finite element for stress intensity factor is feasible and reliable. Assuming the initial crack of 7 mm depth, the bracket can meet the crack growth criteria. The stress intensity factor of the bracket is mainly caused by electromagnetic (EM) load and the thermal load can reduce the stress intensity factor under EM load. The thermal load can make the crack grow on the surface of the bracket and the EM load can cause the crack to extend in the inner of the bracket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.J. Heitzenroeder, A.W. Brooks, J.H. Chrzanowski, F. Dahlgren, R. Hawryluk, G. Loesser, et al., An overview of the iter in-vessel coil systems. in 23rd IEEE/NPSS Symposium on Fusion Engineering San Diego (2009)

  2. M. Kalish, P. Heitzenroeder, A. Brooks, L. Bryant, J. Chrzanowski, E. Daly, et al., Iter In-Vessel Coil design and R&D. in 24th IEEE/NPSS Symposium on Fusion Engineering, Chicago (2011)

  3. C. Neumeyer, A. Brooks, L. Bryant, J. Chrzanowski, R. Feder, M. Gomez et al., Design of the iter in-vessel coils. Fusion Sci. Technol. 60, 95–99 (2011)

    Google Scholar 

  4. T.D. Bohm, M.E. Sawan, S.T. Jackson, P.P.H. Wilson, Detailed nuclear analysis of ITER ELM coils. Fusion Eng. Des. 87, 657–661 (2012)

    Article  Google Scholar 

  5. R. Villari, L. Petrizzi, G. Brolatti, E. Daly, M. Loughlin, A. Martin et al., Three-dimensional neutronic analysis of the ITER in-vessel coils. Fusion Eng. Des. 86, 584–587 (2011)

    Article  Google Scholar 

  6. T. Bohm, A. Brooks, L. Bryant, J. Chrzanowski, E. Daly, R. Feder, et al., Final Report On the Preliminary Design of the ITER In-Vessel Coil System. PPPL (2011)

  7. M. Kalish, A. Brooks, P. Heitzenroeder, C. Neumeyer, P. Titus, Y. Zhai, et al., Design analysis and manufacturing studies for ITER in-vessel coils. in Fusion Eng. (SOFE), 2013 IEEE 25th Symposium on, (2013)

  8. A. Brooks, Y. Zhai, E. Daly, M. Kalish, R. Pillsbury, A. Khodak, Thermal and structural analysis of the ITER ELM coils. Fusion Engineering (SOFE), 2013 IEEE 25th Symposium on, San Francisco, (2013)

  9. S. Zhang, Y. Song, Z. Wang, E. Daly, M. Kalish, Mechanical analysis for ITER upper ELM coil. Fusion Engineering (SOFE), 2013 IEEE 25th Symposium on, San Francisco, (2013)

  10. H. Jin, K. Weiss, Y. Wu, F. Long, M. Yu, Q. Han, Mechanical performance of the ITER ELM Coils’ bracket material of Inconel 625. IEEE Trans. Appl. Supercond. 24, 1–4 (2014)

    Article  Google Scholar 

  11. S.W. Zhang, Y.T. Song, Z.W. Wang, S.S. Du, X. Ji, X.F. Liu et al., Structural analysis and optimization for ITER upper ELM coil. Fusion Eng. Des. 89, 1–5 (2014)

    Article  Google Scholar 

  12. S.W. Zhang, Y.T. Song, Z.W. Wang, S. Lu, X. Ji, S.S. Du et al., Design study of support for ITER ELM coils. J. Fusion Energ. (2014). doi:10.1007/s10894-013-9663-4

    Google Scholar 

  13. S.W. Zhang, Y.T. Song, Z.W. Wang, X. Ji, S.S. Du, Structural design study for ITER upper ELM coils. J. Fusion Energ. (2013). doi:10.1007/s10894-013-9656-3

    Google Scholar 

  14. S.W. Zhang, Magnetic, Thermal Hydraulic and Mechanical Analysis Report of ITER Upper ELM coil & Feeder. ITER_D_L8B5MU, (2013)

  15. Boiler and pressure vessel code, Section III, NB-3000. American Society of Mechanical Engineers (2001)

  16. Boiler and pressure vessel code, Section VIII, ARTICLE KD-3. American Society of Mechanical Engineers (2001)

  17. I. Zatz, Structural design criteria for ITER In-Vessel components (SDC-IC) appendix D In-Vessel Coils (IVC). ITER_D_3WK338, (2012)

  18. K. Watanabe, S. Iki, K. Takiue, M. Saito, Structural and fracture mechanics analysis of ITER toroidal field coil. Fusion Eng. Des. 75–79, 429–433 (2005)

    Article  Google Scholar 

  19. M. Iguchi, M. Saito, Structural and fracture mechanics analysis of ITER vacuum vessel. Fusion Eng. Des. 82, 2029–2034 (2007)

    Article  Google Scholar 

  20. W. Chu, Fracture Mechanics Basis (Science Press, Beijing, 1979)

    Google Scholar 

  21. PPPL IVC Group, Description In-Vessel Coil Analysis Assumptions, Loads, and Boundary Conditions, Princeton Plasma Physics Laboratory (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. W. Zhang.

Additional information

Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S.W., Song, Y.T., Wang, Z.W. et al. Structural and Fracture Mechanics Analysis for the Bracket of ITER Upper ELM Coil. J Fusion Energ 33, 304–308 (2014). https://doi.org/10.1007/s10894-014-9675-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-014-9675-8

Keywords

Navigation